1
|
Li WT, Zhang S, Guo H, Yu L, Xing C. Construction of heterogeneously connected cobalt-based MOF-COF and its application in highly selective separation of trace lead ions. Talanta 2024; 278:126546. [PMID: 39002263 DOI: 10.1016/j.talanta.2024.126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
As a new type of porous crystalline composite material, MOF-COF has shown great advantages in metal separation. Herein, a CoMOF-COF was designed for highly selective separation of trace Pb2+ ions. The designed CoMOF-COF has a high density of nitrogen-oxygen functional groups and can selectively separate metal ions. There is a strong affinity between the designed CoMOF-COF material and metal Pb2+ ions, which can be attributed to the ordered heterogeneous porous structure and large amounts of nitrogen-and oxygen-containing functional groups. The composite showed high adsorption selectivity for Pb2+ ions and had adsorption capacity of 33 mg g-1, with high chemical stability. Based on this solid phase extraction material, a high sensitivity detection method for Pb2+ ions was established, which has the detection limit of 37.3 ng L-1, precision of 1.9 %. Linear detection range is 0.2-10 ng mL-1, and the detection of Pb2+ ions in actual water samples was realized. Through this study, it is proved that the strong affinity between the designed CoMOF-COF materials and metal Pb2+ ions can be attributed to the soft and hard acid-base theory, which reveals the structure-activity relationship between the porous heterostructure of such materials and metal separation, providing a highly selective separation material for the separation of other environmental pollutants.
Collapse
Affiliation(s)
- Wei-Tao Li
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, Hebei, 054001, China.
| | - Shuo Zhang
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, Hebei, 054001, China
| | - Huanhuan Guo
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, Hebei, 054001, China
| | - Ling Yu
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, Hebei, 054001, China
| | - Cuijuan Xing
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, Hebei, 054001, China
| |
Collapse
|
2
|
Bedair A, Abdelhameed RM, Hammad SF, Abdallah IA, Mansour FR. Applications of metal organic frameworks in dispersive micro solid phase extraction (D-μ-SPE). J Chromatogr A 2024; 1732:465192. [PMID: 39079363 DOI: 10.1016/j.chroma.2024.465192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) are a fascinating family of crystalline porous materials made up of metal clusters and organic linkers. In comparison with other porous materials, MOFs have unique characteristics including high surface area, homogeneous open cavities, and permanent high porosity with variable shapes and sizes. For these reasons, MOFs have recently been explored as sorbents in sample preparation by solid-phase extraction (SPE). However, SPE requires large amounts of sorbents and suffers from limited contact surfaces with analytes, which compromises extraction recovery and efficiency. Dispersive SPE (D-SPE) overcomes these limitations by dispersing the sorbents into the sample, which in turn increases contact with the analytes. Miniaturization of the microextraction procedure, particularly the amount of sorbent reduces the amount consumed of the organic solvent and shorten the time required to attain the equilibrium state. This may explain the reported high efficiency and applicability of MOFs in dispersive micro SPE (D-µ-SPE). This method retains all the advantages of solid phase extraction while also being simpler, faster, cheaper, and, in some cases, more effective in comparison with D-SPE. Besides, D-µ-SPE requires smaller amounts of the sorbents which reduces the overall cost, and the amount of waste generated from the analytical process. In this review, we discuss the applications of MOFs in D-µ-SPE of various analytes including pharmaceuticals, pesticides, organic dyes from miscellaneous matrices including water samples, biological samples and food samples.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Monufia, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza 12622, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111 Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Monufia, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111 Egypt.
| |
Collapse
|
3
|
Jevremović A, Savić M, Janošević Ležaić A, Krstić J, Gavrilov N, Bajuk-Bogdanović D, Milojević-Rakić M, Ćirić-Marjanović G. Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations-Can They Actually Retain Them All? Polymers (Basel) 2023; 15:4349. [PMID: 38006074 PMCID: PMC10675784 DOI: 10.3390/polym15224349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.
Collapse
Affiliation(s)
- Anka Jevremović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Marjetka Savić
- Vinča Institute of Nuclear Science, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | | | - Jugoslav Krstić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Nemanja Gavrilov
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
4
|
Quintas PY, Agostini E, Wevar Oller AL, Escudero LB. Biohybrid Adsorbent for the Preconcentration of Lead and Its Determination in Fruit Juices by Electrothermal Atomic Absorption Spectrometry. J AOAC Int 2023; 106:1542-1549. [PMID: 37338544 DOI: 10.1093/jaoacint/qsad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Fruit juices are one of the most non-alcoholic beverages consumed in the world. Essential elements and other nutrients present in fruit juices play an important role in human well-being. However, fruit juices may also contain potentially toxic elements at trace levels, causing health risks. OBJECTIVE The objective of this work was to develop an analytical methodology based on the preconcentration of lead using a new biodegradable hybrid material (BHM) composed of Rhodococcus erythropolis AW3 bacteria and Brassica napus hairy roots. METHODS The BHM was implemented in an online solid-phase extraction (SPE) system for the determination of lead in fruit juices by electrothermal atomic absorption spectrometry (ETAAS). RESULTS Effects of critical parameters on lead retention were studied. Under optimal experimental conditions, extraction efficiency higher than 99.9% and an enrichment factor of 62.5 were achieved. The dynamic capacity of the BHM was 36 mg/g, which favored the reuse of the column for at least eight biosorption-desorption cycles. The LOD and LOQ for preconcentration of 5 mL of sample were 5.0 and 16.5 ng/L lead, respectively. The RSD was 4.8% (at 1 µg/L lead and n = 10). CONCLUSION The developed method was suitable for application to lead determination in different types of fruit juice. HIGHLIGHTS A novel microextraction procedure based on the use of a biohybrid adsorbent. Highly sensitive determination of Pb at trace levels. Analysis of Pb in fruit juices samples. An eco-friendly microextraction technique for Pb determination.
Collapse
Affiliation(s)
- Pamela Y Quintas
- National University of Cuyo, Faculty of Natural and Exact Sciences, Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO-CONICET, Padre J. Contreras 1300, 5500 Mendoza, Argentina
| | - Elizabeth Agostini
- Universidad Nacional de Río Cuarto-CONICET, Departamento de Biología Molecular, FCEFQyN, 5800 Córdoba, Argentina
| | - Ana L Wevar Oller
- Universidad Nacional de Río Cuarto-CONICET, Departamento de Biología Molecular, FCEFQyN, 5800 Córdoba, Argentina
| | - Leticia B Escudero
- National University of Cuyo, Faculty of Natural and Exact Sciences, Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO-CONICET, Padre J. Contreras 1300, 5500 Mendoza, Argentina
| |
Collapse
|
5
|
Pinar Gumus Z, Soylak M. Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Bio-monitoring of non-metabolized BTEX compounds in urine by dynamic headspace-needle trap device packed with 3D Ni/Co-BTC bimetallic metal-organic framework as an efficient absorbent. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|