1
|
Kadhim MM, Khadom AA, Abaies JK, Kadhum WR, Hachim SK. Performance of ginger constituents against SARS-CoV-2 virus: A therapeutic and theoretical approach. Parasite Epidemiol Control 2024; 25:e00347. [PMID: 38629055 PMCID: PMC11019275 DOI: 10.1016/j.parepi.2024.e00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
In the present research, ginger extracted compounds, namely; Gingerol {(1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone} (1), Zingerone {(4-(4-Hydroxy-3-methoxyphenyl)-2-butanone)} (2), and Shogoals {(E)-1-(4-Hydroxy-3- methoxyphenyl) dec-4-en-3-one)} (3) have been investigated as SARS-Cov-2 inhibitors. The interaction of extracted compounds with the virus's spikes may restrict the virus's reproduction or give time to the body's immune system to detect viruses, consequently producing appropriate antibodies. Gaussian 09 with a 6-311G (d, p) basis set, UCA FUKUI, MGL implement, DSV, and LigPlus software were utilized. The active sites for adsorption were identified using the total electron density (TED), FUKUI function, and Millikan charges. Furthermore, docking analysis clearly showed that the inhibition of viral replication depends on binding energy (Eb) and ligand efficiency (LE). A docking study revealed that the inhibition ability of the studied compounds on SARS-CoV-2 was in the order of 2 > 3 > 1.
Collapse
Affiliation(s)
- Mustafa M. Kadhim
- Department of Chemical and Petroleum Refinery, Kut University College, Kut, Wasit, Iraq
| | - Anees A. Khadom
- Department of Chemical Engineering, College of Engineering, University of Diyala, Baquba City 32001, Daiyla Governorate, Iraq
| | | | - Wesam R. Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq
| | - Safa K. Hachim
- National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
2
|
Butera V. Density functional theory methods applied to homogeneous and heterogeneous catalysis: a short review and a practical user guide. Phys Chem Chem Phys 2024; 26:7950-7970. [PMID: 38385534 DOI: 10.1039/d4cp00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The application of density functional theory (DFT) methods in catalysis has been growing fast in the last few decades thanks to both the availability of more powerful high computing resources and the development of new efficient approximations and approaches. DFT calculations allow for the understanding of crucial catalytic aspects that are difficult or even impossible to access by experiments, thus contributing to faster development of more efficient and selective catalysts. Depending on the catalytic system and properties under investigation, different approaches should be used. Moreover, the reliability of the obtained results deeply depends on the approximations involved in both the selected method and model. This review addresses chemists, physicists and materials scientists whose interest deals with the application of DFT-based computational tools in both homogeneous catalysis and heterogeneous catalysis. First, a brief introduction to DFT is presented. Then, the main approaches based on atomic centered basis sets and plane waves are discussed, underlining the main differences, advantages and limitations. Eventually, guidance towards the selection of the catalytic model is given, with a final focus on the evaluation of the energy barriers, which represents a crucial step in all catalytic processes. Overall, the review represents a rational and practical guide for both beginners and more experienced users involved in the wide field of catalysis.
Collapse
Affiliation(s)
- Valeria Butera
- CEITEC - Central European Institute of Technology Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Department of Science and Biological Chemical and Pharmaceutical Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
3
|
Mokhtar A, Abdelkrim S, Hachemaoui M, Boukoussa B, Chaibi W, Sardi A, Djelad A, Sassi M, Issam I, Iqbal J, Patole SP, Abboud M. Removal of crystal violet dye using a three-dimensional network of date pits powder/sodium alginate hydrogel beads: Experimental optimization and DFT calculation. Int J Biol Macromol 2023; 251:126270. [PMID: 37582434 DOI: 10.1016/j.ijbiomac.2023.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Biodegradable and very low-cost adsorbent beads were prepared from date pits powder (DP) and sodium alginate (SA). DP to SA ratios was varied (1/2, 1/4 and 1/6) and used to eliminate Crystal violet (CV) a cationic dye. Adsorbents were characterized by FTIR, SEM-EDS, UV-vis DR, TGA and the point of zero charge (pHPZC). The optimal composite beads SA@6DP show high adsorption capacities of 83.565 mg/g toward CV than SA@2DP and SA@4DP. The kinetics investigation showed that the adsorption is well described by the pseudo-second-order kinetic (R2 = 0.998). The thermodynamics and isotherms studies exhibit that the adsorption phenomenon for SA@6DP adsorbent is endothermic and significantly fitted with the Redlich-Peterson model. The experimental adsorption tests were optimized by the Box-Behnken design (BBD) which led to conclude the maximal CV removal efficiency achieved by SA@6DP was 99.873 % using [CV] = 50 mg/L, adsorbent mass = 20 mg and 48 h of contact time. The theoretical calculation proved that the CV molecules favor the mode of attack due to their electrophilic character and can accept the SA@6DP adsorbent electrons more easily to form an anti-bonding orbital. SA@6DP hydrogel beads are therefore an exceptional bio-adsorbent that offers excellent adsorption performance.
Collapse
Affiliation(s)
- Adel Mokhtar
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Department of Process Engineering, Faculty of Science and Technology, University of Relizane, 48000 Relizane, Algeria.
| | - Soumia Abdelkrim
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohammed Hachemaoui
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Department of Materials Engineering, Faculty of Chemistry, University of Sciences and Technology Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Wahiba Chaibi
- Center for Scientific and Technical Research in Physico-chemical Analysis, BP 384, Zone Industrial Bou-Ismail, RP 42004, Tipaza, Algeria; Physical and Organic Macromolecular Chemistry Laboratory (LCOPM), Faculty of Exact Sciences, University "Djillali Liabes", BP 89, Sidi Bel Abb, Sidi Bel Abbès, Algeria
| | - Amina Sardi
- Department of Chemistry, Faculty of Exact Sciences and Computer Science, University of Hassiba Ben Bouali, Chlef, 02000, Algeria
| | - Amal Djelad
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohammed Sassi
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Shashikant P Patole
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Al-Jorani KR, Abbood AF, Ali AA, Kadhim MM, Hamdan SD. Synthesis, characterizations, and computational studies of new tetrasubstituted imidazole containing a benzothiazole moiety. Struct Chem 2022. [DOI: 10.1007/s11224-022-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Saah SA, Boadi NO, Awudza JA. Facile synthesis of PbS, Bi2S3 and Bi-doped PbS nanoparticles from metal piperidine dithiocarbamates complexes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
|
7
|
Al-Shdefat R, Kadhim MM, Mahdi AB, Lafta HA, Kumar A. Theoretical evaluation of poly(amidoamine) dendrimers with different peripheral groups as a purinethol drug delivery system in aqueous medium. Colloids Surf B Biointerfaces 2022; 216:112534. [PMID: 35623258 DOI: 10.1016/j.colsurfb.2022.112534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 12/29/2022]
Abstract
In this work, density functional theory calculations were used to study the association of PUR with amine- and acetyl-terminated PAMAM dendrimers considering implicit solvent effect at neutral and low pH conditions. Frontier molecular orbitals' analysis indicates that the electronic properties of dendrimers are extremely sensitive to the presence of PUR molecule at both neutral and low pH conditions. Encapsulation of PUR molecule into the both amine- and acetyl-terminated PAMAM dendrimers leads to a Gibbs free energy of (ΔG) - 20.25 kcal.mol-1 at physiological pH. The corresponding ΔG values reduce to the - 1.45 and - 0.91 kcal.mol-1 at low pH, indicating that the drug molecule is released easily at low pH. The calculated recovery times for amine- (3.87 ×102 and 3.87 ×102, at neutral and low pH, respectively) and acetyl-terminated (5.34 ×1010 and 1.81 ×10-1, at neutral and low pH, respectively) dendrimers suggest that acetylation can improve the release pattern of drug molecule.
Collapse
Affiliation(s)
| | - Mustafa M Kadhim
- Department of Medical Laboratory Techniques, Dijlah University College, Baghdad 10021, Iraq; Department of Medical instruments engineering techniques, Al-Farahidi University, Baghdad,10021, Iraq.
| | - Ahmed B Mahdi
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - A Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
8
|
Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
|
10
|
Magnesium oxide nanotube as a promising material for detection of methamphetamine drug: theoretical study. J Mol Model 2022; 28:150. [PMID: 35562620 DOI: 10.1007/s00894-022-05151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Owing to the negative impacts of abusing illegal drugs like methamphetamine (MAF), their detection and control are of paramount importance. Therefore, it is very critical to determine MAF in biological samples. The current research study investigated the sensing interaction of inherent and MgO nanotubes (MgONT) toward MAF via density functional theory computations. We determined that the MgONT has a sensing response of 283.31, and it remarkably improves the reactivity toward MAF. The levels of energy for the highest occupied and the lowest unoccupied molecular orbitals have changed to a great extent, thereby reducing bandgap (Eg) values which increased electrical conductivity. Furthermore, a short recovery time (~ 28.65 ms) has been anticipated for MAF desorption from the MgONT exterior. This piece of research showed that MgONT might be a possible electronic sensor and an appropriate choice to deliver MAF in biological samples.
Collapse
|
11
|
Effect of N-benzyl group in indole scaffold of thiosemicarbazones on the biological activity of their Pd(II) complexes: DFT, biomolecular interactions, in silico docking, ADME and cytotoxicity studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Spectroscopic, antibacterial and anti-cancer studies of new platinum(II)-diethyldithiocarbamate mixed ligand complexes with phosphine or amine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Al‐Sabawi EN, Al‐Janabi ASM, Jerjis HM, Khairy M, Alduaij OK, Yousef TA. Synthesis, characterization, antibacterial, anti‐cancer and DFT studies of nano metal (II) oxime complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emad N. Al‐Sabawi
- Department of Chemistry, College of Science Tikrit University Tikrit Iraq
| | - Ahmed S. M. Al‐Janabi
- Department of Biochemistry, College of Veterinary Medicine Tikrit University Tikrit Iraq
| | | | - Mohammed Khairy
- Chemistry department, Science College Imam Mohammad Ibn Saud Islamic University Riyadh Riyadh Saudi Arabia
- Chemistry department, Faculty of Science Benha University Benha Egypt
| | - O. K. Alduaij
- Chemistry department, Science College Imam Mohammad Ibn Saud Islamic University Riyadh Riyadh Saudi Arabia
| | - Tarek A. Yousef
- Chemistry department, Science College Imam Mohammad Ibn Saud Islamic University Riyadh Riyadh Saudi Arabia
- Toxic and Narcotic drug, Forensic Medicine Department, Mansoura Laboratory, Medicolegal organization, Ministry of Justice Egypt
| |
Collapse
|
14
|
Synthesis of a new nanocomposite with the core TiO2/Hydrogel: Brilliant green dye adsorption, isotherms, kinetics, and DFT studies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Boadi NO, Degbevi M, Saah SA, Badu M, Borquaye LS, Kortei NK. Antimicrobial properties of metal piperidine dithiocarbamate complexes against Staphylococcus aureus and Candida albicans. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Abstract
Bacterial infection remains a worldwide problem that requires urgent addressing. Overuse and poor disposal of antibacterial agents abet the emergence of bacterial resistance mechanisms. There is a clear need for new approaches for the development of antibacterial therapeutics. Herein, the antibacterial potential of molecules based on dithiocarbamate anions, of general formula R(R’)NCS2(−), and metal salts of transition metals and main group elements, is summarized. Preclinical studies show a broad range of antibacterial potential, and these investigations are supported by appraisals of possible biological targets and mechanisms of action to guide chemical syntheses. This bibliographic review of the literature points to the exciting potential of dithiocarbamate-based therapeutics in the crucial battle against bacteria. Additionally, included in this overview, for the sake of completeness, is mention of the far fewer studies on the antifungal potential of dithiocarbamates and even less work conducted on antiparasitic behavior.
Collapse
|