1
|
Ni X, Feng T, Zhang Y, Lin Z, Kong F, Zhang X, Lu Q, Zhao Y, Zou B. Application Progress of Immobilized Enzymes in the Catalytic Synthesis of 1,3-Dioleoyl-2-palmitoyltriglyceride Structured Lipids. Foods 2025; 14:475. [PMID: 39942068 PMCID: PMC11816798 DOI: 10.3390/foods14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
In recent years, the preparation of OPO (1,3-dioleoyl-2-palmitoyltriglyceride)-structured lipids through immobilized lipase catalysis has emerged as a research hotspot in the fields of food and biomedical sciences. OPO structured lipids, renowned for their unique molecular structure and biological functions, find wide applications in infant formula milk powder, functional foods, and nutritional supplements. Lipase-catalyzed reactions, known for their efficiency, high selectivity, and mild conditions, are ideal for the synthesis of OPO structured lipids. Immobilized lipases not only address the issues of poor stability and difficult recovery of free enzymes but also enhance catalytic efficiency and reaction controllability. This review summarizes the latest advancements in the synthesis of OPO structured lipids using immobilized lipases, focusing on immobilization methods, enhancements in enzyme activity and stability, the optimization of reaction conditions, and improvements in product purity and yield. Furthermore, it delves into the reaction mechanisms of enzymatic synthesis of OPO structured lipids, process optimization strategies, and the challenges and broad prospects faced during industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.N.); (T.F.); (Y.Z.); (Z.L.); (F.K.); (X.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
2
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Wei T, Mueed A, Luo T, Sun Y, Zhang B, Zheng L, Deng Z, Li J. 1,3-Dioleoyl-2-palmitoyl-glycerol and 1-oleoyl-2-palmitoyl-3-linoleoyl-glycerol: Structure-function relationship, triacylglycerols preparation, nutrition value. Food Chem 2024; 443:138560. [PMID: 38295563 DOI: 10.1016/j.foodchem.2024.138560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Based on multivariate statistics, this review compared major triacylglycerols (TAGs) in animal milk and human milk fat from China and other countries. Human milk fat differs from animal milk fat in that it has longer acyl chains and higher concentrations of 1,3-dioleoyl-2-palmitoyl-glycerol (O-P-O) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (O-P-L). O-P-L is a significant and distinct TAG in human milk fat, particularly in China. 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) is human milk's major triglyceride molecule of O-P-L, accounting for more than 70%. As a result, OPL has piqued the interest of Chinese academics. The synthesis process and nutritional outcomes of OPL have been studied, including changes in gut microbiota, serum lipid composition, improved fatty acid and calcium absorption, and increased total bile acid levels. However, current OPL research is limited. Therefore, this review discussed enzymatic preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and OPL and their nutritional and physiological activity to direct future research direction for sn-2 palmitate and OPL.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China; National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, China.
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China; National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, China.
| |
Collapse
|
4
|
Huang Y, Liu W, Luo X, Zhao M, Liu T, Feng F. Synthesis and characterization of medium- and long-chain structural lipid rich in α-linolenic acid and lauric acid. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
A comparative study of human milk fat substitute from Rhodococcus opacus and plant-oil based commercial products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Progress and perspectives of enzymatic preparation of human milk fat substitutes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:118. [PMCID: PMC9635142 DOI: 10.1186/s13068-022-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Human milk fat substitutes (HMFS) with triacylglycerol profiles highly similar to those of human milk fat (HMF) play a crucial role in ensuring the supply in infant nutrition. The synthesis of HMFS as the source of lipids in infant formula has been drawing increasing interest in recent years, since the rate of breastfeeding is getting lower. Due to the mild reaction conditions and the exceptionally high selectivity of enzymes, lipase-mediated HMFS preparation is preferred over chemical catalysis especially for the production of lipids with desired nutritional and functional properties. In this article, recent researches regarding enzymatic production of HMFS are reviewed and specific attention is paid to different enzymatic synthetic route, such as one-step strategy, two-step catalysis and multi-step processes. The key factors influencing enzymatic preparation of HMFS including the specificities of lipase, acyl migration as well as solvent and water activity are presented. This review also highlights the challenges and opportunities for further development of HMFS through enzyme-mediated acylation reactions.
Collapse
|
7
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
8
|
Abstract
This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.
Collapse
|
9
|
Li Y, Li C, Feng F, Wei W, Zhang H. Synthesis of medium and long-chain triacylglycerols by enzymatic acidolysis of algal oil and lauric acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Synthesis of Dietetic Structured Lipids from Spent Coffee Grounds Crude Oil Catalyzed by Commercial Immobilized Lipases and Immobilized Rhizopus oryzae Lipase on Biochar and Hybrid Support. Processes (Basel) 2020. [DOI: 10.3390/pr8121542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the valorization of coffee industry residues, namely spent coffee grounds (SCG) as a source of oil, and silverskin (CS) as a source of both oil and biomass, under the concept of the circular economy. Therefore, crude oil from SCG was used to produce low-calorie structured lipids (SL) for food and pharmaceutical industries, and CS to produce biochar by pyrolysis for biotechnological uses. SL were obtained by acidolysis with caprylic or capric acid, or interesterification with ethyl caprylate or ethyl caprate, in solvent-free media, catalyzed by immobilized sn-1,3 regioselective lipases. Silverskin biochar (BIO) was directly used as enzyme carrier or to produce hybrid organic-silica (HB) supports for enzyme immobilization. Rhizopus oryzae lipase (ROL) immobilized on Amberlite (AMB), silica (SIL), BIO or HB, and the commercial immobilized Thermomyces lanuginosus (Lipozyme TL IM) and Rhizomucor miehei (Lipozyme RM IM) lipases were tested. Lipozyme RM IM showed better results in SL production than Lipozyme TLIM or ROL on BIO, SIL or HB. About 90% triacylglycerol conversion was attained after 7 h acidolysis or interesterification. Lipozyme RM IM was more stable in interesterification (80% and 65% activity with ethyl caprylate or ethyl caprate) than in acidolysis (first-order decay) after 10 reuses.
Collapse
|
11
|
Viriato RLS, Queirós MDS, Macedo GA, Ribeiro APB, Gigante ML. Design of new lipids from bovine milk fat for baby nutrition. Crit Rev Food Sci Nutr 2020; 62:145-159. [PMID: 32876475 DOI: 10.1080/10408398.2020.1813073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The lipid phase of infant formulas is generally composed of plant-based lipids structured with a high concentration of palmitic acid (C16:0) esterified at the sn-2 position of triacylglycerol since this structure favors the absorption and metabolism of fatty acids. Palm oil is commonly used to make up the lipid phase of infant formulas due to its high concentration of palmitic acid and solids profile and melting point similar to human milk fat. However, the addition of palm oil to infant formulas has been associated with the presence of 3-monochloropropane-1,2-diol (3-MCPD) esters, a group of glycerol-derived chemical contaminants (1,2,3-propanotriol), potentially toxic, formed during the refining process of vegetable oil. Bovine milk fat obtained from the complex biosynthesis in the mammary gland has potential as a technological alternative to replace palm oil and its fractions for the production of structured lipids to be used in infant formulas. Its application as a substitute is due to its composition and structure, which resembles breast milk fat, and essentially to the preferential distribution pattern of palmitic acids (C16:0) with approximately 85% distributed at the sn-1 and sn-2 position of triacylglycerol. This review will address the relationship between the chemical composition and structure of lipids in infant nutrition, as well as the potential of bovine milk fat as a basis for the production of structured lipids in substitution for the lipid phase of vegetable origin currently used in infant formulas.
Collapse
Affiliation(s)
- Rodolfo Lázaro Soares Viriato
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Mayara de Souza Queirós
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Mirna Lúcia Gigante
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Mota DA, Rajan D, Heinzl GC, Osório NM, Gominho J, Krause LC, Soares CMF, Nampoothiri KM, Sukumaran RK, Ferreira-Dias S. Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. BIORESOURCE TECHNOLOGY 2020; 307:123223. [PMID: 32220818 DOI: 10.1016/j.biortech.2020.123223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, crude oils extracted from spent coffee grounds (SCG) and olive pomace (OP) were used as raw-material to synthesize low-calorie triacylglycerols, either by acidolysis with capric acid, or by interesterification with ethyl caprate, in solvent-free media, catalyzed by sn-1,3 regioselective lipases. The Rhizopus oryzae lipase (ROL) was immobilized in magnetite nanoparticles (MNP-ROL) and tested as novel biocatalyst. MNP-ROL performance was compared with that of the commercial immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM). For both oils, Lipozyme TL IM preferred interesterification over acidolysis. MNP-ROL catalyzed reactions were faster and acidolysis was preferred with yields of c.a. 50% new triacylglycerols after 3 h acidolysis of OP or SCG oils. MNP-ROL was very stable following the Sadana deactivation model with half-lives of 163 h and 220 h when reused in batch acidolysis and interesterification of OP oil, respectively.
Collapse
Affiliation(s)
- Danyelle A Mota
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal; Institute of Technology and Research (ITP), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil; Tiradentes University (UNIT), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil
| | - Devi Rajan
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal; Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Giuditta C Heinzl
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal
| | - Natália M Osório
- Instituto Politécnico de Setúbal, Escola Superior de Tecnologia do Barreiro, Lavradio, Portugal
| | - Jorge Gominho
- Instituto Superior de Agronomia, Universidade de Lisboa, Centro de Estudos Florestais, Lisbon, Portugal
| | - Laiza C Krause
- Institute of Technology and Research (ITP), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil; Tiradentes University (UNIT), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil
| | - Cleide M F Soares
- Institute of Technology and Research (ITP), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil; Tiradentes University (UNIT), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Suzana Ferreira-Dias
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal.
| |
Collapse
|
13
|
Dijkstra AJ. Prediction of Fatty Acid Incorporation during Enzymatic Interesterification. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Guo Y, Cai Z, Xie Y, Ma A, Zhang H, Rao P, Wang Q. Synthesis, physicochemical properties, and health aspects of structured lipids: A review. Compr Rev Food Sci Food Saf 2020; 19:759-800. [PMID: 33325163 DOI: 10.1111/1541-4337.12537] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.
Collapse
Affiliation(s)
- Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanping Xie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aiqin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, P. R. China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|