1
|
Jafari M, Abolmaali SS, Borandeh S, Najafi H, Zareshahrabadi Z, Koohi-Hosseinabadi O, Azarpira N, Zomorodian K, Tamaddon AM. Dendritic hybrid materials comprising polyhedral oligomeric silsesquioxane (POSS) and hyperbranched polyglycerol for effective antifungal drug delivery and therapy in systemic candidiasis. NANOSCALE 2023; 15:16163-16177. [PMID: 37772640 DOI: 10.1039/d3nr04321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Systemic Candida infections are routinely treated with amphotericin B (AMB), a highly effective antimycotic drug. However, due to severe toxicities linked to the parenteral administration of conventional micellar formulations (Fungizone®), its clinical utility is limited. Hyperbranched polyglycerols (HPGs) are multi-branched three-dimensional hydrophilic macromolecules that can be used to lessen the toxicity of AMB while also increasing its aqueous solubility. In the current research, to improve the safety and therapeutic efficacy of AMB, we developed new polyhedral oligomeric silsesquioxane - hyperbranched polyglycerol dendrimers with cholesterol termini (POSS-HPG@Chol) using azide-alkyne click reaction. Compared with Fungizone®, the as-synthesized POSS-HPG@Chol/AMB had lower minimum inhibitory and fungicidal concentrations against almost all studied Candida spp., as well as much less hemolysis and cytotoxicity. POSS-HPG@Chol/AMB revealed total protection of Balb/C mice from severe Candida infections in an experimental model of systemic candidiasis and can effectively reduce or eliminate AMB liver and kidney tissue injuries. Thanks to their safety, biocompatibility, and unique therapeutic properties, the developed POSS-polyglycerol dendrimers could be viable nanostructures for the delivery of poorly soluble drugs like AMB.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, PO Box 713484-5794, Shiraz, Iran.
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-allah Research Tower, PO Box 7193711351, Shiraz, Iran.
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, PO Box 713484-5794, Shiraz, Iran.
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, PO Box 713484-5794, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| |
Collapse
|
2
|
Chernikova EV, Mineeva KO. Reversible Deactivation Radical Copolymerization: Synthesis of Copolymers with Controlled Unit Sequence. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Chernikova EV, Kudryavtsev YV. RAFT-Based Polymers for Click Reactions. Polymers (Basel) 2022; 14:570. [PMID: 35160559 PMCID: PMC8838018 DOI: 10.3390/polym14030570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The parallel development of reversible deactivation radical polymerization and click reaction concepts significantly enriches the toolbox of synthetic polymer chemistry. The synergistic effect of combining these approaches manifests itself in a growth of interest to the design of well-defined functional polymers and their controlled conjugation with biomolecules, drugs, and inorganic surfaces. In this review, we discuss the results obtained with reversible addition-fragmentation chain transfer (RAFT) polymerization and different types of click reactions on low- and high-molar-mass reactants. Our classification of literature sources is based on the typical structure of macromolecules produced by the RAFT technique. The review addresses click reactions, immediate or preceded by a modification of another type, on the leaving and stabilizing groups inherited by a growing macromolecule from the chain transfer agent, as well as on the side groups coming from monomers entering the polymerization process. Architecture and self-assembling properties of the resulting polymers are briefly discussed with regard to their potential functional applications, which include drug delivery, protein recognition, anti-fouling and anti-corrosion coatings, the compatibilization of polymer blends, the modification of fillers to increase their dispersibility in polymer matrices, etc.
Collapse
Affiliation(s)
- Elena V. Chernikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Yaroslav V. Kudryavtsev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| |
Collapse
|
4
|
Sreeja S, Parameshwar R, Varma PRH, Sailaja GS. Hierarchically Porous Osteoinductive Poly(hydroxyethyl methacrylate- co-methyl methacrylate) Scaffold with Sustained Doxorubicin Delivery for Consolidated Osteosarcoma Treatment and Bone Defect Repair. ACS Biomater Sci Eng 2021; 7:701-717. [PMID: 33395260 DOI: 10.1021/acsbiomaterials.0c01628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A bifronted cure system for osteosarcoma, a common aggressive bone tumor, is highly in demand to prevail the postsurgical adversities in connection with systemic chemotherapy and repair of critical-size bone defects. The hierarchically porous therapeutic scaffolds presented here are synthesized by free radical-initiated copolymerization of hydroxyethyl methacrylate and methyl methacrylate [HEMA/MMA 80:20 and 90:10 mM, H2O/NaCl porogen], which are further surface-phosphorylated [P-PHM] and transformed to bifunctional by impregnating doxorubicin (DOX) [DOXP-PHM]. The P-PHM scaffolds exhibited porous microarchitecture analogous to native cancellous bone (scanning electron microscopy analysis), while X-ray photoelectron spectroscopy analysis authenticated surface phosphorylation. Based on pore characteristics, swelling attributes and slow-pace degradation, P-PHM9163 and P-PHM8263 (HEMA/MMA 90:10 and 80:20 with H2O/NaCl: 60/3.0 weight %, respectively) were chosen from the series and evaluated for osteoinductive efficacy in vitro. Both P-PHM9163 and P-PHM8263 invoked calcium phosphate mineralization in simulated physiological conditions (day 14) with Ca/P ratios of 1.58 and 1.66 respectively, comparable to human bone (1.67). Early biomineralization (Alizarin Red S and von Kossa staining) was evidenced at day 7, while osteoblast differentiation was verified by time-dependent expression of the typical late marker, osteocalcin, at day 14 and 21 in rat bone marrow mesenchymal cells. DOX-loaded P-PHM9163 (DOXP-PHM9163) exhibited pH-responsive (tumor analogous pH; 6.5) sustained release of DOX for prolonged time (up to 45 days) and invoked cellular alterations by cortical stress fiber formation and DNA fragmentation in human osteosarcoma cells leading to early apoptosis (24 h), validated by annexin V/PI staining (FACS) and immunostaining (F-actin/DAPI). Subsequent to DOX release tenure, the scaffold induced the formation of well-organized, porous post-release Ca-P apatite coating (Ca/P is 1.3) in simulated body fluid (day 14) which further endorses the dual functionality of the system. Altogether, the results accentuate that DOXP-PHM9163 is a potential bifunctional therapeutic scaffold capable of extended localized chemotherapeutic delivery in-line with inherent osteogenesis for efficient bone cancer treatment.
Collapse
Affiliation(s)
- S Sreeja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682 022, India
| | - Ramesh Parameshwar
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, India
| | - P R Harikrishna Varma
- Head of Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, India
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682 022, India.,Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi, Kerala 682 022, India.,Centre for Excellence in Advanced Materials, Cochin University of Science and Technology, Kochi, Kerala 682 022, India
| |
Collapse
|
5
|
Kibar G. Spherical shape poly(M‐POSS) micro/nano hybrid latex particles: One‐step synthesis and characterization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Güneş Kibar
- Department of Materials Engineering, Faculty of Engineering Adana Alparslan Turkes Science and Technology University Adana Turkey
| |
Collapse
|
6
|
Ullah A, Ullah S, Mahmood N, Shah SM, Hussain Z, Hussain H. Effect of polyhedral oligomeric silsesquioxane nanocage on the crystallization behavior of PEG
5k
‐
b
‐P(MA‐POSS) diblock copolymers achieved via atom transfer radical polymerization. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Asad Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Shakir Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Nasir Mahmood
- Institut für Chemie, FG Mikro‐ und Nanostrukturbasierte PolymerverbundwerkstoffeMartin Luther University Halle‐Wittenberg Halle/Saale Germany
| | - Syed M. Shah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Zakir Hussain
- School of Chemical and Materials Engineering (SCME)National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Hazrat Hussain
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| |
Collapse
|
7
|
Hu X, Wang Y, Xu M. Study of the cell responses in tantalum carbide nanoparticles-enriched polysaccharide composite hydrogel. Int J Biol Macromol 2019; 135:501-511. [DOI: 10.1016/j.ijbiomac.2019.05.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022]
|
8
|
Hu X, Wang Y, Zhang L, Xu M. Design of a novel polysaccharide-based cryogel using triallyl cyanurate as crosslinker for cell adhesion and proliferation. Int J Biol Macromol 2019; 126:221-228. [DOI: 10.1016/j.ijbiomac.2018.12.226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 11/26/2022]
|
9
|
Chemical Synthesis and Characterization of Poly(poly(ethylene glycol) methacrylate)-Grafted CdTe Nanocrystals via RAFT Polymerization for Covalent Immobilization of Adenosine. Polymers (Basel) 2019; 11:polym11010077. [PMID: 30960061 PMCID: PMC6401988 DOI: 10.3390/polym11010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
This paper describes the functionalization of poly(poly(ethylene glycol) methacrylate) (PPEGMA)-grafted CdTe (PPEGMA-g-CdTe) quantum dots (QDs) via surface-initiated reversible addition–fragmentation chain transfer (SI-RAFT) polymerization for immobilization of adenosine. Initially, the hydroxyl-coated CdTe QDs, synthesized using 2-mercaptoethanol (ME) as a capping agent, were coupled with a RAFT agent, S-benzyl S′-trimethoxysilylpropyltrithiocarbonate (BTPT), through a condensation reaction. Then, 2,2′-azobisisobutyronitrile (AIBN) was used to successfully initiate in situ RAFT polymerization to generate PPEGMA-g-CdTe nanocomposites. Adenosine-above-PPEGMA-grafted CdTe (Ado-i-PPEGMA-g-CdTe) hybrids were formed by the polymer shell, which had successfully undergone bioconjugation and postfunctionalization by adenosine (as a nucleoside). Fourier transform infrared (FT-IR) spectrophotometry, energy-dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy results indicated that a robust covalent bond was created between the organic PPEGMA part, cadmium telluride (CdTe) QDs, and the adenosine conjugate. The optical properties of the PPEGMA-g-CdTe and Ado-i-PPEGMA-g-CdTe hybrids were investigated by photoluminescence (PL) spectroscopy, and the results suggest that they have a great potential for application as optimal materials in biomedicine.
Collapse
|
10
|
Yang Z, Fu K, Yu J, Liu X. Adsorbents for Organic Dyes Based on PDMAEMA/POSS Hybrid Material via Thiol-Michael Addition Reaction. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-0964-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Peng YF, Tsai A, Huang MH. Synthesis and thermal investigation of phosphate-functionalized acrylic materials. Polym J 2018. [DOI: 10.1038/s41428-018-0086-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Polymer Nanocomposites via Click Chemistry Reactions. Polymers (Basel) 2017; 9:polym9100499. [PMID: 30965802 PMCID: PMC6418640 DOI: 10.3390/polym9100499] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023] Open
Abstract
The emerging areas of polymer nanocomposites, as some are already in use in industrial applications and daily commodities, have the potential of offering new technologies with all manner of prominent capabilities. The incorporation of nanomaterials into polymeric matrix provides significant improvements, such as higher mechanical, thermal or electrical properties. In these materials, interface/interphase of components play a crucial role bringing additional features on the resulting nanocomposites. Among the various preparation strategies of such materials, an appealing strategy relies on the use of click chemistry concept as a multi-purpose toolbox for both fabrication and modulation of the material characteristics. This review aims to deliver new insights to the researchers of the field by noticing effective click chemistry-based methodologies on the preparation of polymer nanocomposites and their key applications such as optic, biomedical, coatings and sensor.
Collapse
|
13
|
Li Y, Dong XH, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang WB, Cheng SZ. Polyhedral oligomeric silsesquioxane meets “click” chemistry: Rational design and facile preparation of functional hybrid materials. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
R. B, M. FR, S. B, A. S, M. S. New polytriazoleimides containing green synthesized titanium dioxide using Artemisia pallens plant extract: optical, dielectric, thermal and mechanical properties. NEW J CHEM 2017. [DOI: 10.1039/c6nj03164a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel aromatic diamine containing a pyridine pendant group, 1,2,3-triazole ring and ether linkage was synthesized by ‘click reaction’ in the presence of Cu(i) catalyst.
Collapse
Affiliation(s)
| | | | - Balaji S.
- Department of Chemistry
- Anna University
- Chennai-600025
- India
| | - Selvamani A.
- Department of Chemistry
- Anna University
- Chennai-600025
- India
| | - Sarojadevi M.
- Department of Chemistry
- Anna University
- Chennai-600025
- India
| |
Collapse
|
15
|
Woo SA, Choi SY, Kim JB. Non-chemically amplified resists containing polyhedral oligomeric silsesquioxane for a bilayer resist system. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
|
17
|
Szanka A, Szarka G, Iván B. Poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) Four-arm Star Functional Copolymers by Quasiliving ATRP: Equivalent Synthetic Routes by Protected and Nonprotected HEMA Comonomers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.864921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|