1
|
Akkaya B, Akkaya R. Synthesis, Characterization, and Investigation of Doxorubicin Drug Release Properties of Poly(acrylamide-co-acrylic Acid/Maleic Acid)-Hydroxyapatite Composite Hydrogel. Med Chem 2024; 20:537-545. [PMID: 38279756 DOI: 10.2174/0115734064268726231203164405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Hydroxyapatite and its derivatives have been used for a lot of applications. One of them is drug release studies. Due to its low adhesion strength and lack of the strength and durability required for load-carrying applications, there is a need to improve the properties of hydroxyapatite. For this aim, the most important factors are increasing pH sensitivity and preventing coagulation. Mixing it with multifunctional polymers is the best solution. OBJECTIVES The main objectives are: 1- preparing poly(acrylamide-co-acrylic acid/maleic acid)- hydroxyapatite (PAm-co-PAA/PMA-HApt), 2- assessment of (PAm-co-PAA/PMA-HApt) and dox-loaded poly(acrylamide-co-acrylic acid/maleic acid) (Dox-(PAm-co-PAA/PMA-HApt)) composite hydrogels, and 3- elucidating the difference in behavior of drug release studies between hydroxyapatite (HApt) and poly(acrylamide-co-acrylic acid/maleic acid) composite hydrogels. METHODS A composite of PAm-co-PAA/PMA-HApt was prepared by direct polymerization of acrylamide-co-acrylic acid/maleic acid in a suspension of HApt. The drug loading and release features of PAm-co-PAA/PMA-HApt and HApt were then investigated for doxorubicin (dox) release. Using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TG/DTA), this unique composite hydrogel has been physicochemically investigated. Also, a colorimetric assay was used to assess the in vitro biocompatible support and anticancer activity of HApt and the newly developed composite hydrogel XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay. RESULTS According to the results of drug release studies of this new material, it is pH sensitive, and PAm-co-PAA/PMA-HApt demonstrated a faster release than HApt at 37°C in the acidic solution of pH 4.5 than in the neutral solution of pH 7.4. The XTT assay outcomes also demonstrated the biocompatibility of PAm-co-PAA/PMA-HApt and HApt and the cytotoxic effect of dox-loaded PAm-co-PAA/PMA-HApt. CONCLUSION It should be inferred that the drug release profile was improved at pH 4.5 by the newly produced pH-sensitive composite hydrogel.
Collapse
Affiliation(s)
- Birnur Akkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Recep Akkaya
- Department of Biophysics, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
2
|
Ri HC, Jon CS, Lu L, Piao X, Li D. A dynamic electromagnetic field assisted boronic acid-modified magnetic adsorbent on-line extraction of cis-diol-containing flavonoids from onion sample. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Ri HC, Piao J, Cai L, Jin X, Piao X, Jin X, Jon CS, Liu L, Zhao J, Shang HB, Li D. A reciprocating magnetic field assisted on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry determination of trace tetracyclines in water. Anal Chim Acta 2021; 1182:338957. [PMID: 34602203 DOI: 10.1016/j.aca.2021.338957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
A reciprocating magnetic-field-assisted on-line solid-phase extraction (RMF-SPE) method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for continuous enrichment of trace chemicals in water samples. Under the assist of the reciprocating magnetic field, carboxyl-modified magnetic nanoparticles (CMNPs) were applied to prepare microcolumn with even dispersion by periodical motion, instead of traditional compaction as extraction sorbents. When water sample passed through the extraction region, dynamic sorbents generates an advantage of countless contacts between sorbents and targets without blocking for high efficient extraction. In this study, the on-line RMF-SPE method was established and evaluated by determination of tetracyclines (TCs) from water samples as analysis models, including oxytetracycline, tetracycline, demeclocycline, metacycline, chlortetracycline, and doxycycline. Experimental conditions have been investigated such as flow rate, reciprocating speed, elution time, and so on. The method showed high relative recovery (95.4-111.1%) and good repeatability with RSD from 2.9 to 11.8% for the 200 mL water sample. The linearity range, limits of detection (LODs), and limits of quantification (LOQs) were 0.5-200 μg L-1 (chlortetracycline) and 0.1-200 μg L-1 (other TCs), 12.0-74.1 ng L-1, and 40.1-247 ng L-1, respectively. More importantly, the high enrichment factors in a range of 204 (chlortetracycline) to 276 (demeclocycline) indicate that a small amount of dynamic sorbents (only 10 mg) give full play to extraction attributing to the reciprocating movement, especially for trace analysis and continuous extraction, which is significant for water samples from sea, river and domestic waste.
Collapse
Affiliation(s)
- Hyok-Chol Ri
- College of Pharmacy, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Jishou Piao
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Long Cai
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Xuejun Jin
- College of Pharmacy, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Xiangfan Piao
- Engineering College, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Xiangzi Jin
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Chol-San Jon
- College of Pharmacy, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Lu Liu
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Jinhua Zhao
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|