1
|
Peniche H, Razonado IA, Alcouffe P, Sudre G, Peniche C, Osorio-Madrazo A, David L. Wet-Spun Chitosan-Sodium Caseinate Fibers for Biomedicine: From Spinning Process to Physical Properties. Int J Mol Sci 2024; 25:1768. [PMID: 38339046 PMCID: PMC10855522 DOI: 10.3390/ijms25031768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
We designed and characterized chitosan-caseinate fibers processed through wet spinning for biomedical applications such as drug delivery from knitted medical devices. Sodium caseinate was either incorporated directly into the chitosan dope or allowed to diffuse into the chitosan hydrogel from a coagulation bath containing sodium caseinate and sodium hydroxide (NaOH). The latter route, where caseinate was incorporated in the neutralization bath, produced fibers with better mechanical properties for textile applications than those formed by the chitosan-caseinate mixed collodion route. The latter processing method consists of enriching a pre-formed chitosan hydrogel with caseinate, preserving the structure of the semicrystalline hydrogel without drastically affecting interactions involved in the chitosan self-assembly. Thus, dried fibers, after coagulation in a NaOH/sodium caseinate aqueous bath, exhibited preserved ultimate mechanical properties. The crystallinity ratio of chitosan was not significantly impacted by the presence of caseinate. However, when caseinate was incorporated into the chitosan dope, chitosan-caseinate fibers exhibited lower ultimate mechanical properties, possibly due to a lower entanglement density in the amorphous phase of the chitosan matrix. A standpoint is to optimize the chitosan-caseinate composition ratio and processing route to find a good compromise between the preservation of fiber mechanical properties and appropriate fiber composition for potential application in drug release.
Collapse
Affiliation(s)
- Hazel Peniche
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
- Biomaterials Center, University of Havana, Havana 10600, Cuba
| | - Ivy Ann Razonado
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Pierre Alcouffe
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Carlos Peniche
- Faculty of Chemistry, University of Havana, Havana 10600, Cuba;
| | - Anayancy Osorio-Madrazo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Jena Center for Soft Matter (JCSM), and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University of Jena, 07743 Jena, Germany
- Laboratory of Organ Printing, University of Bayreuth, 95447 Bayreuth, Germany
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| |
Collapse
|
2
|
Kara F, Aksoy EA, Aksoy S, Hasirci N. Coating of silver nanoparticles on polyurethane film surface by green chemistry approach and investigation of antibacterial activity against S. epidermidis. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles with potential antibacterial properties are included in biomaterials for the production of medical devices, which are used for diagnoses or treatment purposes. The aim of the current study was coating the polyurethane (PU) films with silver nanoparticles (AgNPs) due to their antibacterial efficacy. PU films were first modified by chitosan (CH), treated with AgNO3 to let CH chelate with silver ions, and then treated with vitamin-C (vit C) or glucose (Glu) to reduce the adsorbed ions to atomic silver to form AgNPs. The surfaces of the films were examined by ATR-FTIR, XPS, XRD, and SEM. Chemical bond formation between CH and Ag ions and AgNPs were determined by ATR-FTIR. Meanwhile, XPS and SEM analyses proved the presence of reduced metallic silver and nanoparticles on the film surfaces, respectively. According to the SEM analyses, a homogeneous distribution of AgNPs, with sizes 99–214 nm and 37–54 nm, on the film surfaces were obtained depending on Glu or vit C reduction, respectively. The films presented excellent antibacterial performance against Gram positive Staphylococcus epidermidis ( S. epidermidis). These results suggested that the mentioned green technology can be easily applied to obtain AgNP coated polymeric surfaces with very high antibacterial efficacy. Although there are some studies dealing with AgNP formation on PU sponges or fibers, to the best of our knowledge, this is the first study showing AgNP formation on the CH conjugated PU films.
Collapse
Affiliation(s)
- Filiz Kara
- Department of Industrial Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey
| | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Polymer Science and Technology, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Serpil Aksoy
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Near East University, Tissue Engineering and Biomaterial Research Center, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
3
|
Karakeçili A, Topuz B, Ersoy FŞ, Şahin T, Günyakti A, Demirtaş TT. UiO-66 metal-organic framework as a double actor in chitosan scaffolds: Antibiotic carrier and osteogenesis promoter. BIOMATERIALS ADVANCES 2022; 136:212757. [PMID: 35929303 DOI: 10.1016/j.bioadv.2022.212757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as a useful class of nanostructures with well-suited characteristics for drug delivery applications, due to the high surface area and pore size for efficient loading. Despite their use as a nano-carrier for controlled delivery of various types of drugs, the inherent osteo-conductive properties have stolen a great attention as a growing area of investigation. Here, we evaluated the double function of UiO-66 MOF structure as a carrier for fosfomycin antibiotic and also as an osteogenic differentiation promoter when introduced in 3D chitosan scaffolds, for the first time. Our results revealed that the wet-spun chitosan scaffolds containing fosfomycin loaded UiO-66 nanocrystals (CHI/UiO-66/FOS) possessed fiber mesh structure with integrated micro-scale fibers and increased mechanical strength. In vitro antibacterial studies indicated that CHI/UiO-66/FOS scaffolds showed bactericidal activity against Staphylococcus aureus. Moreover, the scaffolds were biocompatible to MC3T3-E1 pre-osteoblasts and significantly up-regulated the expression of osteogenesis-related genes and facilitated the extracellular matrix mineralization, in vitro. Taken together, our results demonstrate UiO-66 MOFs can present double functionality and CHI/UiO-66/FOS scaffolds hold a significant potential to be further explored as an alternative approach in treating infected bone defects like osteomyelitis.
Collapse
Affiliation(s)
- Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100, Tandoğan Ankara, Turkey.
| | - Berna Topuz
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100, Tandoğan Ankara, Turkey
| | - Feriha Şevval Ersoy
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100, Tandoğan Ankara, Turkey
| | - Toygun Şahin
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100, Tandoğan Ankara, Turkey
| | - Ayşe Günyakti
- Ankara University, Biotechnology Institute, Gümüşdere 60. Yıl Yerleşkesi, 06135 Keçiören Ankara, Turkey
| | - Tuğrul Tolga Demirtaş
- Erciyes University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 38039 Kayseri, Turkey; Erciyes University Genome and Stem Cell Center, 38039 Kayseri, Turkey
| |
Collapse
|
4
|
Kubíčková J, Medek T, Husby J, Matonohová J, Vágnerová H, Marholdová L, Velebný V, Chmelař J. Nonwoven Textiles from Hyaluronan for Wound Healing Applications. Biomolecules 2021; 12:16. [PMID: 35053164 PMCID: PMC8773973 DOI: 10.3390/biom12010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/19/2023] Open
Abstract
Nonwoven textiles are used extensively in the field of medicine, including wound healing, but these textiles are mostly from conventional nondegradable materials, e.g., cotton or synthetic polymers such as polypropylene. Therefore, we aimed to develop nonwoven textiles from hyaluronan (HA), a biocompatible, biodegradable and nontoxic polysaccharide naturally present in the human body. For this purpose, we used a process based on wet spinning HA into a nonstationary coagulation bath combined with the wet-laid textile technology. The obtained HA nonwoven textiles are soft, flexible and paper like. Their mechanical properties, handling and hydration depend on the microscale fibre structure, which is tuneable by selected process parameters. Cell viability testing on two relevant cell lines (3T3, HaCaT) demonstrated that the textiles are not cytotoxic, while the monocyte activation test ruled out pyrogenicity. Biocompatibility, biodegradability and their high capacity for moisture absorption make HA nonwoven textiles a promising material for applications in the field of wound healing, both for topical and internal use. The beneficial effect of HA in the process of wound healing is well known and the form of a nonwoven textile should enable convenient handling and application to various types of wounds.
Collapse
Affiliation(s)
- Jolana Kubíčková
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Tomáš Medek
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Jarmila Husby
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Jana Matonohová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Hana Vágnerová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Lucie Marholdová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| |
Collapse
|
5
|
Rostamitabar M, Abdelgawad AM, Jockenhoevel S, Ghazanfari S. Drug-Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery. Macromol Biosci 2021; 21:e2100021. [PMID: 33951278 DOI: 10.1002/mabi.202100021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Drug-eluting medical textiles have recently gained great attention to be used in different applications due to their cost effectiveness and unique physical and chemical properties. Using various fiber production and textile fabrication technologies, fibrous constructs with the required properties for the target drug delivery systems can be designed and fabricated. This review summarizes the current advances in the fabrication of drug-eluting medical textiles. Different fiber production methods such as melt-, wet-, and electro-spinning, and textile fabrication techniques such as knitting and weaving are explained. Moreover, various loading processes of bioactive agents to obtain drug-loaded fibrous structures with required physicochemical and morphological properties, drug delivery mechanisms, and drug release kinetics are discussed. Finally, the current applications of drug-eluting fibrous systems in wound care, tissue engineering, and transdermal drug delivery are highlighted.
Collapse
Affiliation(s)
- Matin Rostamitabar
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands.,Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Abdelrahman M Abdelgawad
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands.,Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands.,Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
6
|
Alagoz AS, Rodriguez-Cabello JC, Hasirci V. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Biomed Mater 2018; 13:055010. [DOI: 10.1088/1748-605x/aad139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:805-824. [DOI: 10.1080/09205063.2017.1354671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elbay Malikmammadov
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Tugba Endogan Tanir
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Aysel Kiziltay
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Puppi D, Chiellini F. Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds. POLYM INT 2017. [DOI: 10.1002/pi.5332] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Via Moruzzi Pisa Italy
| | - Federica Chiellini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Via Moruzzi Pisa Italy
| |
Collapse
|
9
|
Wu HL, Bremner DH, Li HY, Shi QQ, Wu JZ, Xiao RQ, Zhu LM. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:702-9. [DOI: 10.1016/j.msec.2016.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/08/2016] [Indexed: 01/02/2023]
|
10
|
Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, Dorafshar AH, Grayson WL. Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration. ACS Biomater Sci Eng 2016; 2:1806-1816. [PMID: 27942578 DOI: 10.1021/acsbiomaterials.6b00101] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue-engineered approaches to regenerate bone in the craniomaxillofacial region utilize biomaterial scaffolds to provide structural and biological cues to stem cells to stimulate osteogenic differentiation. Bioactive scaffolds are typically comprised of natural components but often lack the manufacturability of synthetic materials. To circumvent this trade-off, we 3D printed materials comprised of decellularized bone (DCB) matrix particles combined with polycaprolactone (PCL) to create novel hybrid DCB:PCL scaffolds for bone regeneration. Hybrid scaffolds were readily printable at compositions of up to 70% bone by mass and displayed robust mechanical properties. Assessments of surface features revealed both collagenous and mineral components of bone were present. Qualitative and quantitative assessments showed increased surface roughness relative to that of pure PCL scaffolds. These findings correlated with enhanced cell adhesion on hybrid surfaces relative to that on pure surfaces. Human adipose-derived stem cells (hASCs) cultured in DCB:PCL scaffolds without soluble osteogenic cues exhibited significant upregulation of osteogenic genes in hybrid scaffolds relative to pure PCL scaffolds. In the presence of soluble phosphate, hybrid scaffolds resulted in increased calcification. The hASC-seeded scaffolds were implanted into critical-sized murine calvarial defects and yielded greater bone regeneration in DCB:PCL scaffolds compared to that in PCL-only at 1 and 3 months post-transplantation. Taken together, these results demonstrate that 3D printed DCB:PCL scaffolds might be effective for stimulating bone regeneration.
Collapse
Affiliation(s)
- Ben P Hung
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Bilal A Naved
- Fischell Department of Biomedical Engineering, University of Maryland, College Park, Maryland 21231, United States
| | - Ethan L Nyberg
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Miguel Dias
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Christina A Holmes
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore 21231, Maryland, United States
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Amir H Dorafshar
- Department of Plastic Surgery, The Johns Hopkins Hospital, Baltimore 21231, Maryland, United States
| | - Warren L Grayson
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| |
Collapse
|
11
|
Puppi D, Piras AM, Pirosa A, Sandreschi S, Chiellini F. Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:44. [PMID: 26758891 DOI: 10.1007/s10856-015-5658-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
The employment of a tissue engineering scaffold able to release an antimicrobial agent with a controlled kinetics represents an effective tool for the treatment of infected tissue defects as well as for the prevention of scaffolds implantation-related infectious complications. This research activity was aimed at the development of additively manufactured star poly(ε-caprolactone) (*PCL) scaffolds loaded with levofloxacin, investigated as antimicrobial fluoroquinolone model. For this purpose a computer-aided wet-spinning technique allowing functionalizing the scaffold during the fabrication process was explored. Scaffolds with customized composition, microstructure and anatomical external shape were developed by optimizing the processing parameters. Morphological, thermal and mechanical characterization showed that drug loading did not compromise the fabrication process and the final performance of the scaffolds. The developed *PCL scaffolds showed a sustained in vitro release of the loaded antibiotic for 5 weeks. The proposed computer-aided wet-spinning technique appears well suited for the fabrication of anatomical scaffolds endowed with levofloxacin-releasing properties to be tested in vivo for the regeneration of long bone critical size defects in a rabbit model.
Collapse
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Anna Maria Piras
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Alessandro Pirosa
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Stefania Sandreschi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Federica Chiellini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| |
Collapse
|
12
|
Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on Escherichia coli. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515627471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Scaffolds used in tissue engineering applications should have high biocompatibility with minimum allergic, toxic, apoptotic, or necrotic effects on the growing cells and newly forming tissue and, if possible, have antimicrobial property to prevent infection at the host site. In this study, novel micro-fibrous chitosan scaffolds, having mineralized bioactive surface to enhance cell adhesion and a model antibiotic (gentamicin) to prevent bacterial attack, were prepared. The effects of the scaffolds on proliferation, viability, apoptosis, and necrosis of Saos-2 cells are reported for the first time. Wet spinning technique was used in the scaffold preparation and biomineralization was achieved by incubating them in five-time concentrated simulated body fluid for 2, 7, or 14 days (coded as CH-BM/2, CH-BM/7, and CH-BM/14, respectively). Gentamicin, an effectively used antibiotic in bone treatments, was loaded by vacuum-pressure cycle. Energy-dispersive X-ray results demonstrated that Ca/P ratio of the mineral phase varies depending on the incubation period. When the scaffolds were cultured with Saos-2 cells, cell adhesion and extracellular matrix formation occurred on all types of scaffolds. Alamar Blue cytotoxicity tests showed correlation among mineral concentration and cytotoxicity where CH-BM/2 had significantly more favorable properties. For all types of scaffolds, apoptosis and necrosis were less than 10%, meaning the samples are biocompatible. Gentamicin-loaded scaffolds showed high antimicrobial efficacy against Escherichia coli. The presence of mineral phase enhanced the adhesive capacity of cells and entrapment efficiency of antibiotic. These results suggest that the bioactive and antimicrobial scaffolds prepared in this study can act as promising matrices in bone tissue engineering applications.
Collapse
|
13
|
Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules 2015; 5:3-19. [PMID: 25581889 PMCID: PMC4384108 DOI: 10.3390/biom5010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/31/2014] [Indexed: 11/17/2022] Open
Abstract
A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.
Collapse
|
14
|
He XH, Wang W, Deng K, Xie R, Ju XJ, Liu Z, Chu LY. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Adv 2015. [DOI: 10.1039/c4ra10696b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan microfibers with controllable internals from tubular to peapod-like structures are fabricated from microfluidics for microfluid transport and synergistic encapsulation.
Collapse
Affiliation(s)
- Xiao-Heng He
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Wei Wang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Ke Deng
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Rui Xie
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Xiao-Jie Ju
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Zhuang Liu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Liang-Yin Chu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology
| |
Collapse
|
15
|
Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. J Biomed Mater Res B Appl Biomater 2014; 102:1562-79. [PMID: 24678016 DOI: 10.1002/jbm.b.33144] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 03/06/2014] [Indexed: 01/04/2023]
Abstract
Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.g. wet-spinning) for the obtainment of scaffolds with a three-dimensional network of micropores suitable for effective cells migration. Progress in additive manufacturing technology has led to the development of complex scaffold's shapes and microfibrous structures with a high degree of automation, good accuracy and reproducibility. Various loading methods, such as direct blending, coaxial electrospinning and microparticles incorporation, are enabling to develop customized strategies for the biofunctionalization of nano/microfibrous scaffolds with a tailored kinetics of release of different bioactive agents, ranging from small molecules, such as antibiotics, to protein drugs, such as growth factors, and even cells. Recent activities on the combination of different processing techniques and loading methods for the obtainment of biofunctionalized polymeric constructs with a complex multiscale structure open new possibilities for the development of biomimetic scaffolds endowed with a hierarchical architecture and a sophisticated release kinetics of different bioactive agents. This review is aimed at summarizing current advances in technologies and methods for manufacturing nano/microfibrous polymeric constructs suitable as tissue engineering scaffolds, and for their combination with different bioactive agents to promote tissue regeneration and therapeutic effects.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), University of Pisa, 56010, San Piero a Grado (Pi), Italy
| | | | | | | | | | | |
Collapse
|
16
|
Poly(ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspheres for bone tissue engineering applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.40110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|