1
|
Silva SB, Freitas OM, Vieira EF, Gomes A, Carreiras AR, Moreira DC, Esfandiari P, Silva JF, Delerue-Matos C, Domingues VF. Eco-Friendly Biocomposites from Chestnut Waste: Production, Optimization, Characterization, and Application. Polymers (Basel) 2025; 17:616. [PMID: 40076109 PMCID: PMC11902815 DOI: 10.3390/polym17050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
This study explores the valorization of non-commercial chestnut waste from the Portuguese chestnut industry to develop biocomposites. The composites were obtained by hot compression molding, and a Box-Behnken Design model was employed to optimize the mechanical, thermal, and water resistance properties of the chestnut-based composite, using fruit and shell fibers, respectively, as the polymeric matrix and reinforcement agent. The optimal formulation, comprising 70% chestnut, no glycerol, a molding temperature of 120 °C, and applying a pressure of 2.93 MPa for 30 min, achieved a Flexural Strength of 9.00 MPa and a Flexural Modulus of 950 MPa. To enhance water resistance, shellac was added as a natural hydrophobic coating. Water interaction tests indicated that shellac-treated biocomposites exhibited superior water resistance, absorbing approximately two times less water than those containing glycerol or untreated samples. Thermal analysis revealed that glycerol acted as a plasticizer, improving flexibility and reducing the glass transition temperature. Additionally, the chestnut-based biocomposite demonstrated an out-of-plane thermal conductivity of 0.79 W/m·K, categorizing it as a thermal insulator. The final prototype application was a candle holder, showcasing the potential for the practical and sustainable use of chestnut-based composite. This research highlights the potential for chestnut waste to be repurposed into eco-friendly products, offering an alternative to conventional plastics and contributing to a circular economy.
Collapse
Affiliation(s)
- Simão B. Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.B.S.); (O.M.F.); (E.F.V.); (C.D.-M.)
| | - Olga M. Freitas
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.B.S.); (O.M.F.); (E.F.V.); (C.D.-M.)
| | - Elsa F. Vieira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.B.S.); (O.M.F.); (E.F.V.); (C.D.-M.)
| | - Amália Gomes
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana R. Carreiras
- M4S—Materials for Sustainability, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (A.R.C.); (D.C.M.); (P.E.); (J.F.S.)
| | - Diogo C. Moreira
- M4S—Materials for Sustainability, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (A.R.C.); (D.C.M.); (P.E.); (J.F.S.)
| | - Púria Esfandiari
- M4S—Materials for Sustainability, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (A.R.C.); (D.C.M.); (P.E.); (J.F.S.)
| | - João F. Silva
- M4S—Materials for Sustainability, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (A.R.C.); (D.C.M.); (P.E.); (J.F.S.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.B.S.); (O.M.F.); (E.F.V.); (C.D.-M.)
| | - Valentina F. Domingues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.B.S.); (O.M.F.); (E.F.V.); (C.D.-M.)
| |
Collapse
|
2
|
Analysis of Selected Properties of Injection Moulded Sustainable Biocomposites from Poly(butylene succinate) and Wheat Bran. MATERIALS 2021; 14:ma14227049. [PMID: 34832449 PMCID: PMC8623204 DOI: 10.3390/ma14227049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The paper presents a procedure of the manufacturing and complex analysis of the properties of injection mouldings made of polymeric composites based on the poly(butylene succinate) (PBS) matrix with the addition of a natural filler in the form of wheat bran (WB). The scope of the research included measurements of processing shrinkage and density, analysis of the chemical structure, measurements of the thermal and thermo-mechanical properties (Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TG), Heat Deflection Temperature (HDT), and Vicat Softening Temperature (VST)), and measurements of the mechanical properties (hardness, impact strength, and static tensile test). The measurements were performed using design of experiment (DOE) methods, which made it possible to determine the investigated relationships in the form of polynomials and response surfaces. The mass content of the filler and the extruder screw speed during the production of the biocomposite granulate, which was used for the injection moulding of the test samples, constituted the variable factors adopted in the DOE. The study showed significant differences in the processing, thermal, and mechanical properties studied for individual systems of the DOE.
Collapse
|
3
|
Rojas-Bringas PM, De-la-Torre GE, Torres FG. Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144869. [PMID: 33486179 DOI: 10.1016/j.scitotenv.2020.144869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Amidst the global plastic pollution crisis, bio-based polymers have been proposed as a potential substitute to tackle this issue. Owed to their biodegradability, biopolymers are generally regarded as eco-friendly during the post-consumer (disposal) stage. However, the environmental burden of the many production processes biopolymers and their components undergo better reflect the sustainable nature of these materials. Previous studies evaluating the Life Cycle Assessment (LCA) of starch-based composites have focused on commercially available starches, although other non-conventional starches can also be used to produce biopolymers. To address this knowledge gap, in the present study we evaluated the LCA of starch-Brazil nut fiber biocomposites prepared with starch from three different sources, Andean potato, corn, and sweet potato, and applying two different plasticizers, glycerol and sorbitol. Results indicated that the starch-based biocomposites were less impacting than conventional PLA-Brazil nut fiber and PP-glass fiber composites. The type of starch and plasticizer significantly influenced the environmental load of the production of the composites. The main drivers of these differences were the multiple agricultural practices, such as irrigation and fertilization, and the crop efficiency for starch extraction. Sorbitol was found to be many times more impacting than glycerol in most categories, which is due to the complex processing of sorbitol and high content in biocomposites with similar mechanical properties than glycerol. Additionally, Brazil nut fibers are presented as an eco-friendly and low-burden natural filler due to their easy processing and agricultural waste origin. The limitations, applications, and significance of the results were discussed.
Collapse
Affiliation(s)
- Pedro M Rojas-Bringas
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, 15088 Lima, Peru
| | | | - Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, 15088 Lima, Peru.
| |
Collapse
|
4
|
Mnasri W, Ben Tahar L, Beaunier P, Abi Haidar D, Boissière M, Sandre O, Ammar S. Polyol-Made Luminescent and Superparamagnetic β-NaY 0.8Eu 0.2F 4@γ-Fe 2O 3 Core-Satellites Nanoparticles for Dual Magnetic Resonance and Optical Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E393. [PMID: 32102260 PMCID: PMC7075321 DOI: 10.3390/nano10020393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
Red luminescent and superparamagnetic β-NaY0.8Eu0.2F4@γ-Fe2O3 nanoparticles, made of a 70 nm-sized β-NaY0.8Eu0.2F4 single crystal core decorated by a 10 nm-thick polycrystalline and discontinuous γ-Fe2O3 shell, have been synthesized by the polyol process. Functionalized with citrate ligands they show a good colloidal stability in water making them valuable for dual magnetic resonance and optical imaging or image-guided therapy. They exhibit a relatively high transverse relaxivity r2 = 42.3 mM-1·s-1 in water at 37 °C, for an applied static magnetic field of 1.41 T, close to the field of 1.5 T applied in clinics, as they exhibit a red emission by two-photon excited fluorescence microscopy. Finally, when brought into contact with healthy human foreskin fibroblast cells (BJH), for doses as high as 50 µg·mL-1 and incubation time as long as 72 h, they do not show evidence of any accurate cytotoxicity, highlighting their biomedical applicative potential.
Collapse
Affiliation(s)
- Walid Mnasri
- Lab. ITODYS, Université de Paris, CNRS UMR-7086, 75205 Paris, France;
- Lab. CHO-MN, Faculté des Sciences de Bizerte, Université de Carthage, LR18 ES117021 Zarzouna, Tunisia;
- Lab. ERRMECe, CY Cergy Paris Université, Maison Internationale de la Recherche, 95031 Neuville-Oise, France;
- Lab. LCPO, Univ. Bordeaux, Bordeaux INP, ENSCPB, CNRS UMR-5629, 33607 Pessac, France;
| | - Lotfi Ben Tahar
- Lab. CHO-MN, Faculté des Sciences de Bizerte, Université de Carthage, LR18 ES117021 Zarzouna, Tunisia;
- Faculty of Science of Arar, Northern Border University, 91431 Arar, Saudi Arabia
| | | | - Darine Abi Haidar
- Lab. IJCLab, Université Paris-Saclay, CNRS/IN2P3 UMR-9012, 91405 Orsay, France;
- Lab. IJCLab, Université de Paris, 91405 Orsay, France
| | - Michel Boissière
- Lab. ERRMECe, CY Cergy Paris Université, Maison Internationale de la Recherche, 95031 Neuville-Oise, France;
| | - Olivier Sandre
- Lab. LCPO, Univ. Bordeaux, Bordeaux INP, ENSCPB, CNRS UMR-5629, 33607 Pessac, France;
| | - Souad Ammar
- Lab. ITODYS, Université de Paris, CNRS UMR-7086, 75205 Paris, France;
| |
Collapse
|
5
|
Liminana P, Quiles-Carrillo L, Boronat T, Balart R, Montanes N. The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2179. [PMID: 30400300 PMCID: PMC6265868 DOI: 10.3390/ma11112179] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
In this work poly(butylene succinate) (PBS) composites with varying loads of almond shell flour (ASF) in the 10⁻50 wt % were manufactured by extrusion and subsequent injection molding thus showing the feasibility of these combined manufacturing processes for composites up to 50 wt % ASF. A vegetable oil-derived compatibilizer, maleinized linseed oil (MLO), was used in PBS/ASF composites with a constant ASF to MLO (wt/wt) ratio of 10.0:1.5. Mechanical properties of PBS/ASF/MLO composites were obtained by standard tensile, hardness, and impact tests. The morphology of these composites was studied by field emission scanning electron microscopy-FESEM) and the main thermal properties were obtained by differential scanning calorimetry (DSC), dynamical mechanical-thermal analysis (DMTA), thermomechanical analysis (TMA), and thermogravimetry (TGA). As the ASF loading increased, a decrease in maximum tensile strength could be detected due to the presence of ASF filler and a plasticization effect provided by MLO which also provided a compatibilization effect due to the interaction of succinic anhydride polar groups contained in MLO with hydroxyl groups in both PBS (hydroxyl terminal groups) and ASF (hydroxyl groups in cellulose). FESEM study reveals a positive contribution of MLO to embed ASF particles into the PBS matrix, thus leading to balanced mechanical properties. Varying ASF loading on PBS composites represents an environmentally-friendly solution to broaden PBS uses at the industrial level while the use of MLO contributes to overcome or minimize the lack of interaction between the hydrophobic PBS matrix and the highly hydrophilic ASF filler.
Collapse
Affiliation(s)
- Patricia Liminana
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Teodomiro Boronat
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Rafael Balart
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Nestor Montanes
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| |
Collapse
|
6
|
Gao C, Li Z, Liu Y, Zhang X, Wang J, Wu Y. Thermal, Crystallographic, and Mechanical Properties of Poly(butylene succinate)/Magnesium Hydroxide Sulfate Hydrate Whisker Composites Modified by in Situ Polymerization. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zetian Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinhua Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
7
|
Wu CS. Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:27-36. [DOI: 10.1016/j.msec.2016.06.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
8
|
|