1
|
Li JA, Pan N, Qi Z, He J, Wei Y, Chen W, Qu JB, Wang X, Huang F. Gold nanoclusters stabilized with dopa-containing ligands: Catalyst-indicator integrated probe for tumor cell screening. Talanta 2025; 282:126980. [PMID: 39368331 DOI: 10.1016/j.talanta.2024.126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Elevated hydrogen peroxide (H2O2) levels not only inflict cellular damage but also serve as a harbinger for various diseases. Tumor cells, in particular, often exhibit an abundance of H2O2. Hence, the detection of this pivotal molecule assumes paramount importance in monitoring physiological states and expediting cancer diagnosis. To this end, we have ingeniously devised an enzyme-free and monomeric system for intracellular H2O2 detection. Our astute selection of dopa-containing peptidomimetics, replete with ortho-bisphenol and amino acid moieties, has engendered the synthesis of distinctive fluorescent gold nanoclusters (AuNCs). These nanoclusters not only function as a peroxidase-like catalyst, catalyzing the decomposition of H2O2 into hydroxyl radicals (·OH), but also serve as an indicator, with their fluorescence quenched in response to varying H2O2 concentrations. Experimental results evince that our GDpE-AuNCs exhibit remarkable sensitivity, boasting a detection limit of 0.49 μM and a linear range of 5-1000 μM. Moreover, the amalgamation of catalyst and indicator within a single structure, facilitating efficient cellular uptake, engenders intracellular H2O2 detection and discernment of tumor cells. This pioneering approach bequeaths a valuable assay probe for monitoring physiological states and ushering in early disease diagnosis.
Collapse
Affiliation(s)
- Jin-Ao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Nana Pan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zichun Qi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiahua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yifan Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Weilong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jian-Bo Qu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
2
|
Cao Z, Zhang Y, Luo Z, Li W, Fu T, Qiu W, Lai Z, Cheng J, Yang H, Ma W, Liu C, de Smet LCPM. Construction of a Self-Assembled Polyelectrolyte/Graphene Oxide Multilayer Film and Its Interaction with Metal Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12148-12162. [PMID: 34618452 DOI: 10.1021/acs.langmuir.1c02058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a composite multilayer film onto gold was constructed from two charged building blocks, i.e., negatively charged graphene oxide (GO) and a branched polycation (polyethylenimine, PEI) via layer-by-layer (LbL) self-assembly technology, and this process was monitored in situ with quartz crystal microbalance (QCM) under different experimental conditions. This included the differences in frequency (Δf) as well as the changes in dissipation to yield information on the absorbed mass and viscoelastic properties of the formed PEI/GO multilayer films. The experimental conditions were optimized to obtain a high amount of the adsorbed mass of the self-assembled multilayer film. The surface morphology of the PEI/GO multilayer film onto gold was studied with atomic force microscopy (AFM). It was found that the positively charged PEI chains were combined with the oppositely charged GO to form an assembled film on the QCM sensor surface, in a wrapped and curled fashion. Raman and UV-vis spectra also showed that the intensities of the GO-characteristic signals are almost linearly related to the layer number. To explore the films for their use in divalent ion detection, the frequency response of the PEI/GO multilayer-modified QCM sensor to the exposure of aqueous solutions solution of Cu2+, Ca2+, Zn2+, and Sn2+ was further studied using QCM. Based on the Sauerbrey equation and the weight of different ions, the number of metal ions adsorbed per unit area on the surface of QCM sensors was calculated. For metal ion concentrations of 40 ppm, the adsorption capacities per unit area of Cu2+, Zn2+, Sn2+, and Ca2+ were found to be 1.7, 3.2, 0.7, and 4.9 nmol/cm2, respectively. Thus, in terms of the number of adsorbed ions per unit area, the QCM sensor modified by PEI/GO multilayer film shows the largest adsorption capacity of Ca2+. This can be rationalized by the relative hydration energies.
Collapse
Affiliation(s)
- Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People's Republic of China
- College of Hua Loogeng, Changzhou University, Changzhou, 213164, People's Republic of China
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yang Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Zili Luo
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Wenjun Li
- College of Hua Loogeng, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Tao Fu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Wang Qiu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Zhirong Lai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People's Republic of China
| | - Louis C P M de Smet
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
3
|
Electrochemical sensing of hydrogen peroxide on a carbon paste electrode modified by a silver complex based on the 1,3-bis(1H-benzimidazole-2-yl)propane ligand. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new carbon paste electrode (Ag-CPE) modified with a nitrogen heterocyclic silver(I) complex, [Ag2(BBP)2](pic)2·CH3OH (BBP = 1,3-bis(1H-benzimidazol-2-yl)propane, pic = picrate), was developed as a highly sensitive and simple electrochemical sensor for the determination of hydrogen peroxide. The Ag(I) complex was prepared by an interface reaction and characterized by elemental analysis, IR and UV/Vis spectra and single crystal X-ray diffraction. The Ag(I) complex shows a dinuclear cluster structure, which is formed by two BBP ligands bridging two Ag (I) centers and an Ag–Ag interaction (d
Ag–Ag = 3.0875 Å). Cyclic voltammetry and chronoamperometry studies showed that the electrochemical sensing performance of Ag-CPE for H2O2 was improved in 0.2 m phosphate buffer solution (PBS, pH = 6). The electrochemical H2O2 sensor Ag-CPE exhibits a wide linear detection range from 0.5 to 4.0 mm and a lower detection limit of 0.39 μm with a relatively high sensitivity of 6.77 μA mm
−1. Moreover, the sensor also shows good anti-interference properties and stability. The results prove that the Ag(I) complex based on the bis(benzimidazole) ligand may be an efficient component of electrode materials.
Collapse
|
4
|
Domínguez-Aragón A, Dominguez RB, Peralta-Pérez MDR, Armando Zaragoza-Contreras E. Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Polymeric-based composites can contribute to enhancing the detection, stability, and performance of enzymatic biosensors, due to their high structural stability, conductivity, and biocompatibility. This work presents the fabrication of a nanocomposite of polyaniline (PAni)/gold nanoparticles (AuNP)/carboxylated multiwalled carbon nanotubes (cMWCNT) as functional support for covalently linked catalase (CAT) enzyme. PAni was electropolymerized on a screen-printed carbon electrode (SPCE) and decorated with AuNP to improve charge transfer properties. CAT was bonded through amide formation using the carboxylic groups of cMWCNT, resulting in PAni/AuNP/cMWCNT/CAT biosensor. The structural and electroactive characteristics of the nanocomposite were studied by SEM, FT-IR, and cyclic voltammetry. The optimal performance was achieved after CAT immobilization over PAni/AuNP/cMWCNT/nanocomposite, showing improved analytical features such as a fast amperometric response of 1.28 s, a wide detection range from 0.01 to 6.8 mM, a correlation coefficient (R
2) of 0.9921, a low detection limit of 2.34 µM, and an average recovery rate of 99.6% when evaluated in milk samples. Additionally, the bioelectrode showed excellent selectivity and retained bioactivity after 30 days of storage. Such remarkable performance proved the synergistic effects of both the high surface area of the cMWCNT and AuNP and the inherent PAni electroactivity, yielding direct electron transfer from CAT.
Collapse
Affiliation(s)
- Angélica Domínguez-Aragón
- Departamento de Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C. , Miguel de Cervantes No. 120, CP 31136 , Chihuahua , Chih. , Mexico
| | - Rocio B. Dominguez
- Departamento de Ingeniería y Química de Materiales, CONACyT-Centro de Investigación en Materiales Avanzados, S.C. , Miguel de Cervantes 120, CP 31136 , Chihuahua , Chih. , Mexico
| | - María del Rosario Peralta-Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario , CP 31125 , Chihuahua , Chih. , Mexico
| | - Erasto Armando Zaragoza-Contreras
- Departamento de Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C. , Miguel de Cervantes No. 120, CP 31136 , Chihuahua , Chih. , Mexico
| |
Collapse
|
5
|
Chen S, Huang H, Zhao D, Zhou J, Yu J, Qu B, Liu Q, Sun H, Zhao J. Direct Growth of Polycrystalline GaN Porous Layer with Rich Nitrogen Vacancies: Application to Catalyst-Free Electrochemical Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53807-53815. [PMID: 33206499 DOI: 10.1021/acsami.0c15824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It has been demonstrated that defect engineering is an effective strategy to enhance the activity of materials. Herein, a polycrystalline GaN porous layer (PGP) with high catalytic activity was grown by self-assembly on GaN-coated sapphire substrate by using low-temperature (LT) MOCVD growth. Without doping, LT growth can significantly improve the activity and electrical conductivity of PGP, owing to the presence of rich N-vacancies (∼1020 cm-3). Identification of rich N-vacancies in the PGP material was realized by using atomically resolved STEM (AR-STEM) characterization. The optimized PGP was applied to catalyst-free electrochemical detection of H2O2 with a limit of detection (LOD) of 50 nM, a fast response speed of 3 s, a wide linear detection range (50 nM to 12 mM), and a high stability. The LOD is exceeding 40 fold lower than that of reported metal-catalyst decorated GaN. Moreover, a quantitative relationship between the sensing performances and N-vacancy of PGP was established. To our knowledge, it is the first time that intrinsic GaN materials can exhibit high catalytic activity.
Collapse
Affiliation(s)
- Shunji Chen
- Key Lab of Liaoning IC Technology, School of Biomedical Engineer, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hui Huang
- Key Lab of Liaoning IC Technology, School of Biomedical Engineer, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Danna Zhao
- Key Lab of Liaoning IC Technology, School of Biomedical Engineer, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jialing Zhou
- Key Lab of Liaoning IC Technology, School of Biomedical Engineer, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Yu
- Key Lab of Liaoning IC Technology, School of Biomedical Engineer, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Qu
- Bruker (Beijing) Scientific Technology Co. Ltd., Beijing 100081, China
| | - Qiunan Liu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, YanshanUniversity, Qinhuangdao 066004, P. R. China
| | - Haiming Sun
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, YanshanUniversity, Qinhuangdao 066004, P. R. China
| | - Jun Zhao
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, YanshanUniversity, Qinhuangdao 066004, P. R. China
| |
Collapse
|
6
|
Miniaturized liquid chromatography coupled on-line to in-tube solid-phase microextraction for characterization of metallic nanoparticles using plasmonic measurements. A tutorial. Anal Chim Acta 2018; 1045:23-41. [PMID: 30454572 DOI: 10.1016/j.aca.2018.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
This tutorial aims at providing guidelines for analyzing metallic nanoparticles (NPs) and their dispersions by using methods based on miniaturized liquid chromatography with diode array detection (MinLC-DAD) and coupled on-line to in-tube solid-phase microextraction (IT-SPME). Some practical advice and considerations are given for obtaining reliable results. In addition, this work outlines the potential applications that set these methodologies apart from microscopy-related techniques, dynamic light scattering, single particle ICP-MS, capillary electrophoresis, field-flow fractionation and other chromatographic configurations, which are discussed and mainly seek to accomplish size estimation and NP separation, speciation analysis and quantification of mainly AgNPs and AuNPs. MinLC-DAD has the potential to estimate the NP concentration and from it the average size of unknown samples by calibrating with a single standard, as well as studying potentially non-spherical particles and stability-related properties of their dispersions. While keeping the signal dependency with concentration and increasing the method sensitivity, IT-SPME-MinLC-DAD goes further allowing for the assessment of the dispersant effect and ultimately changes in the nanoparticle surroundings that range from modifications of the hydrodynamic diameter to the exposure to different reagents and matrices. The methodology can still be improved by either exploring newer IT-SPME adsorbents or by assaying new system configurations. Taking into account that this technique gives complementary information in relation to other techniques discussed here, this tutorial serves as a guide for analyzing metallic NPs towards a better understanding of the particle behavior under different scenarios.
Collapse
|
7
|
Rakhi RB, Nayak P, Xia C, Alshareef HN. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 2016; 6:36422. [PMID: 27830757 PMCID: PMC5103228 DOI: 10.1038/srep36422] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.
Collapse
Affiliation(s)
- R B Rakhi
- Materials Science and Engineering, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia.,Chemical Sciences and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Pranati Nayak
- Materials Science and Engineering, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chuan Xia
- Materials Science and Engineering, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Wang MQ, Zhang Y, Bao SJ, Yu YN, Ye C. Ni(II)-Based Metal-Organic Framework Anchored on Carbon Nanotubes for Highly Sensitive Non-Enzymatic Hydrogen Peroxide Sensing. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.199] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Zhang Z, Duan F, He L, Peng D, Yan F, Wang M, Zong W, Jia C. Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1730-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|