1
|
Yusoff NISM, Tham WH, Wahit MU, Abdul Kadir MR, Wong T. The effect of hydroxyapatite filler on biodegradable poly(sorbitol sebacate malate) composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Noor Izyan Syazana Mohd Yusoff
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Weng Hong Tham
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| |
Collapse
|
2
|
Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules 2021; 26:molecules26195944. [PMID: 34641488 PMCID: PMC8512483 DOI: 10.3390/molecules26195944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023] Open
Abstract
The present work highlights the crucial role of the interfacial compatibilization on the design of polylactic acid (PLA)/Magnesium (Mg) composites for bone regeneration applications. In this regard, an amphiphilic poly(ethylene oxide-b-L,L-lactide) diblock copolymer with predefined composition was synthesised and used as a new interface to provide physical interactions between the metallic filler and the biopolymer matrix. This strategy allowed (i) overcoming the PLA/Mg interfacial adhesion weakness and (ii) modulating the composite hydrophilicity, bioactivity and biological behaviour. First, a full study of the influence of the copolymer incorporation on the morphological, wettability, thermal, thermo-mechanical and mechanical properties of PLA/Mg was investigated. Subsequently, the bioactivity was assessed during an in vitro degradation in simulated body fluid (SBF). Finally, biological studies with stem cells were carried out. The results showed an increase of the interfacial adhesion by the formation of a new interphase between the hydrophobic PLA matrix and the hydrophilic Mg filler. This interface stabilization was confirmed by a decrease in the damping factor (tanδ) following the copolymer addition. The latter also proves the beneficial effect of the composite hydrophilicity by selective surface localization of the hydrophilic PEO leading to a significant increase in the protein adsorption. Furthermore, hydroxyapatite was formed in bulk after 8 weeks of immersion in the SBF, suggesting that the bioactivity will be noticeably improved by the addition of the diblock copolymer. This ceramic could react as a natural bonding junction between the designed implant and the fractured bone during osteoregeneration. On the other hand, a slight decrease of the composite mechanical performances was noted.
Collapse
|
3
|
Baştan FE. Fabrication and characterization of an electrostatically bonded PEEK- hydroxyapatite composites for biomedical applications. J Biomed Mater Res B Appl Biomater 2020; 108:2513-2527. [PMID: 32052943 DOI: 10.1002/jbm.b.34583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Abstract
In this study, it was aimed to produce electrostatically induced polyetheretherketone (PEEK) and strontium substituted hydroxyapatite (SrHA) composites. SrHA nanoparticles (5 and 10 vol%) were introduced in the PEEK matrix to increase its mechanical properties and osseointegration. In order to disperse and homogeneously distribute the nanoparticles within the matrix, an electrostatic bond was developed between the PEEK and nanoparticles by wet processing through the attraction of the oppositely charged particles. Particles were pressed and sintered according to the Taguchi Design of experiments (DoE) array. The effects of SrHA reinforcement, sintering temperature and time on the density, crystallinity and crystallite sizes were determined with density test, DSC and XRD, respectively. The disks were also analyzed via SEM, FTIR, compression, microhardness, and nanoindentation tests and were immersed into the simulated body fluid (SBF). The composites produced from electrostatically induced powders presented a homogenous microstructure as SEM analysis illustrated the homogenous dispersion and distribution of the SrHA nanoparticles. The SrHA nanoparticles decreased the relative density and crystallinity of the composite, whereas, the rise in the sintering temperature and time enhanced the relative density, according to the DoE results. SrHA reinforcement improved the reduced modulus and nanoindentation hardness of the PEEK (348.47 MPa, 5.97 GPa) to 392.02 MPa and 6.65 GPa, respectively. SrHA promoted the bioactivity of the composite: an apatite layer covered the surface of PEEK/10SrHA composite after 14 days incubation. These promising results suggest that the electrostatically bonded composite powders would be used to produce homogenous PEEK based bioactive composites.
Collapse
Affiliation(s)
- Fatih Erdem Baştan
- Sakarya University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Thermal Spray Research and Development Laboratory, Esentepe-Sakarya, Turkey
| |
Collapse
|
4
|
Jin C, Leng X, Zhang M, Wang Y, Wei Z, Li Y. Fully biobased biodegradable poly(
l
‐lactide)‐
b
‐poly(ethylene brassylate)‐
b
‐poly(
l
‐lactide) triblock copolymers: synthesis and investigation of relationship between crystallization morphology and thermal properties. POLYM INT 2020. [DOI: 10.1002/pi.5958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenhao Jin
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Manwen Zhang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yanshai Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| |
Collapse
|
5
|
Shuai C, Xu Y, Feng P, Xu L, Peng S, Deng Y. Co-enhance bioactive of polymer scaffold with mesoporous silica and nano-hydroxyapatite. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1097-1113. [PMID: 31156060 DOI: 10.1080/09205063.2019.1622221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesoporous silica Santa Barbara Amorphous-15 (SBA15) and nano-hydroxyapatite (nHA) were introduced in poly-l-lactic acid (PLLA) scaffold fabricated by selective laser sintering to co-enhance the bioactivity. On the one hand, the active elements silicon and calcium released respectively by the degradation of SBA15 and nHA were favorable for stimulating cell response. On the other hand, the hydrated silica gel layer derived from SBA15 could adsorb calcium ions released from nHA, thereby co-promoting apatite nucleation and growth. The experimental results showed that the formation of bone-like apatite on the scaffold was accelerated under simulated body fluid, indicating a good biomineralization capacity. Moreover, the scaffold demonstrated a good cell response in promoting the attachment of cell and the expression of alkaline phosphatase activity. Besides, SBA15 and nHA not only improved the hydrophilicity of the scaffold (the water contact angle changed from 107.4° to 57.8°), but also retarded the pH reduction by neutralizing the acidic hydrolysate of PLLA. These results indicated that the PLLA-SBA15-nHA scaffold may be potential candidates for bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- a State Key Laboratory of High Performance Complex Manufacturing , College of Mechanical and Electrical Engineering, Central South University , Changsha , China.,b Jiangxi University of Science and Technology , Ganzhou , China.,c Shenzhen Institute of Information Technology , Shenzhen , China
| | - Yong Xu
- a State Key Laboratory of High Performance Complex Manufacturing , College of Mechanical and Electrical Engineering, Central South University , Changsha , China.,d Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University , Shaoyang , China
| | - Pei Feng
- a State Key Laboratory of High Performance Complex Manufacturing , College of Mechanical and Electrical Engineering, Central South University , Changsha , China
| | - Liang Xu
- b Jiangxi University of Science and Technology , Ganzhou , China
| | - Shuping Peng
- e NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,f Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Youwen Deng
- g g Department of Emergency Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Haojie D, Liuyun J, Bingli M, Shengpei S. Preparation of a Highly Dispersed Nanohydroxyapatite by a New Surface-Modification Strategy Used as a Reinforcing Filler for Poly(lactic-co-glycolide). Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ding Haojie
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Sustainable Resources Processing and Advanced Materials, and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Jiang Liuyun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Sustainable Resources Processing and Advanced Materials, and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Ma Bingli
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Sustainable Resources Processing and Advanced Materials, and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Su Shengpei
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Sustainable Resources Processing and Advanced Materials, and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
7
|
Bakir M, Meyer JL, Sutrisno A, Economy J, Jasiuk I. Aromatic thermosetting copolyester bionanocomposites as reconfigurable bone substitute materials: Interfacial interactions between reinforcement particles and polymer network. Sci Rep 2018; 8:14869. [PMID: 30291259 PMCID: PMC6173751 DOI: 10.1038/s41598-018-33131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023] Open
Abstract
Development of porous materials consisting of polymer host matrix enriched with bioactive ceramic particles that can initiate the reproduction of cellular organisms while maintaining in vivo mechanical reliability is a long-standing challenge for synthetic bone substitutes. We present hydroxyapatite (HA) reinforced aromatic thermosetting copolyester (ATSP) matrix bionanocomposite as a potential reconfigurable bone replacement material. The nanocomposite is fabricated by solid-state mixing a matching set of precursor oligomers with biocompatible pristine HA particles. During endothermic condensation polymerization reaction, the constituent oligomers form a mechanochemically robust crosslinked aromatic backbone while incorporating the HAs into a self-generated cellular structure. The morphological analysis demonstrates near-homogenous distributions of the pristine HAs within the matrix. The HAs behave as a crack-arrester which promotes a more deformation-tolerant formation with relatively enhanced material toughness. Chain relaxation dynamics of the nanocomposite matrix during glass transition is modified via HA-induced segmental immobilization. Chemical characterization of the polymer backbone composition reveals the presence of a hydrogen-advanced covalent interfacial coupling mechanism between the HAs and ATSP matrix. This report lays the groundwork for further studies on aromatic thermosetting copolyester matrix bionanocomposites which may find applications in various artificial bone needs.
Collapse
Affiliation(s)
- Mete Bakir
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacob L Meyer
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,ATSP Innovations, Champaign, IL, 61820, USA
| | - Andre Sutrisno
- NMR/EPR Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James Economy
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,ATSP Innovations, Champaign, IL, 61820, USA
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|