1
|
El-Maadawy MM, Elzoghby AA, Masoud AM, El-Deeb ZM, El Naggar AMA, Taha MH. Conversion of carbon black recovered from waste tires into activated carbon via chemical/microwave methods for efficient removal of heavy metal ions from wastewater. RSC Adv 2024; 14:6324-6338. [PMID: 38380235 PMCID: PMC10877484 DOI: 10.1039/d4ra00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
In this research study, recovered carbon black (rCB) was obtained via pyrolysis of waste tires. The obtained rCB was then converted into activated carbon species through both chemical treatment and microwave coupled with chemical treatment as a two-step activation process. The activated carbon obtained from chemical activation was denoted as C-AC, while that obtained from exposure to microwave followed by chemical activation was labeled as MC-AC. These two structures were consequently introduced as sorbents for the removal of cadmium ions from an aqueous solution. The structural characteristics of the introduced adsorbents were confirmed using various techniques, namely X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy. Additionally, textual features of these adsorbents were acquired via both scanning electron microscopy (SEM) and N2 adsorption-desorption BET surface area analyses. These two structures were then introduced for Cd ion adsorption under different operating conditions. Particularly, the effect of pH, contact time, adsorbent dose, and metal ion concentration on the efficiency of adsorption was investigated. The 1maximum adsorption capacity was detected at a pH value of 5.0, a contact time of 30 min, a sorbent dose of 0.4 g L-1, and an initial metal concentration of 50 mg L-1 using MC-AC, which exhibited nearly double the sorption capacity detected for C-AC. Kinetic studies indicated that the process of Cd(ii) adsorption is perfectly described and fitted by the pseudo-second-order model. However, adsorption isotherms for the two adsorbents were found to match the Langmuir model, referring to the occurrence of uniform monolayer adsorption for the metal ions. Thermodynamic analysis demonstrated that the adsorption process was spontaneous and endothermic.
Collapse
Affiliation(s)
- M M El-Maadawy
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| | - Amir A Elzoghby
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| | - Ahmed M Masoud
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| | - Zahraa M El-Deeb
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - Ahmed M A El Naggar
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor St., Nasr City Cairo Egypt
| | - Mohamed H Taha
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| |
Collapse
|
2
|
Vinod A, Pulikkalparambil H, Jagadeesh P, Rangappa SM, Siengchin S. Recent advancements in lignocellulose biomass-based carbon fiber: Synthesis, properties, and applications. Heliyon 2023; 9:e13614. [PMID: 37101468 PMCID: PMC10123159 DOI: 10.1016/j.heliyon.2023.e13614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A growing need to reduce the global carbon footprint has prompted all sectors to make significant efforts in this direction. For example, there has been much focus on green carbon fiber sustainability. For example, it was found that the polyaromatic heteropolymer lignin might act as an intermediary in synthesising carbon fiber. Biomass is seen as a potential carbon accommodated solid natural sources that protects the nature and has a big overall supply and widespread distribution. With growing environmental concern in recent years, biomass has gained appeal as a raw material for production of carbon fibers. Especially, the positives of lignin material include its reasonable budget, sustainability, and higher carbon content, which makes it a dominating precursor. This review has examined a variety of bio precursors that help produce lignin and have higher lignin concentrations. In addition, there has been much research on plant sources, lignin types, factors affecting carbon fiber synthesis, spinning methods, stabilization, carbonization, and activation the characterisation techniques used for the lignin carbon fiber to comprehend the structure and features. In addition, an overview of the applications that use lignin carbon fiber has been provided.
Collapse
Affiliation(s)
- Athira Vinod
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Praveenkumara Jagadeesh
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| |
Collapse
|
3
|
Srivastava N, Singh R, Srivastava M, Mohammad A, Harakeh S, Pratap Singh R, Pal DB, Haque S, Tayeb HH, Moulay M, Kumar Gupta V. Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach. BIORESOURCE TECHNOLOGY 2023; 369:128471. [PMID: 36521823 DOI: 10.1016/j.biortech.2022.128471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Biomass to biofuels production technology appears to be one of the most sustainable strategies among various renewable energy resources. Herein, pretreatment is an unavoidable and key step to increase free cellulose availability and digestibility to produce green fuels. Various existing pretreatment technologies of lignocellulosics biomasses (LCBs) face distinct challenges e.g., energy consuming, cost intensive, may lead partial removal of lignin, complex inhibitors production as well as may cause environmental pollutions. These, limitations may be overcome with the application of nanomaterials, employed as nanocatalysts during the pretreatment process of LCBs. In this prospect, the present review focuses and summarizes results of numerous studies and exploring the utilizations of magnetic, carbon based nanostructure, and nanophotocatalysts mediated pretreatment processes along with their possible mechanisms to improve the biofuels production compared to conventional chemical based pretreatment approaches. Furthermore, different aspects of nanomaterials based pretreatment methods with their shortcomings and future prospects have been discussed.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj Kanpur 208002, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hossam H Tayeb
- Nanomedicine Unit, Center of Innovation in Personalised Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
4
|
Jia G, Innocent MT, Yu Y, Hu Z, Wang X, Xiang H, Zhu M. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. Int J Biol Macromol 2023; 226:646-659. [PMID: 36521701 DOI: 10.1016/j.ijbiomac.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lignin remains the second abundant source of renewable carbon with an aromatic structure. However, most of the lignin is burnt directly for power generation, with an effective utilization rate of <2 %, making value addition on lignin an urgent requirement. From this perspective, preparation of lignin-based carbon fibers has been widely studied as an effective way to increase value addition on lignin. However, lignin species are diverse and complex in structure, and the pathway that enables changes in lignin structure during pretreatment, fiber formation, stabilization, and carbonization is still uncertain. In this review, we condense the common structural evolution route from the previous studies, which can serve as a guide towards engineered lignin carbon fibers with high performance properties.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Recent advances in lignin-based carbon materials and their applications: A review. Int J Biol Macromol 2022; 223:980-1014. [PMID: 36375669 DOI: 10.1016/j.ijbiomac.2022.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.
Collapse
|
6
|
Xu Y, Chen S, Zhu M, Liu Y. Novel silicon‐contained lignin‐based carbon fibers derived from bamboo pulping black liquor with improved electrochemical performance for supercapacitors. J Appl Polym Sci 2021. [DOI: 10.1002/app.51321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yongjian Xu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| | - Shenglin Chen
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| | - Meng Zhu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| | - Yan Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
7
|
Qu W, Yang J, Sun X, Bai X, Jin H, Zhang M. Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques. Int J Biol Macromol 2021; 189:768-784. [PMID: 34464641 DOI: 10.1016/j.ijbiomac.2021.08.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The production of low-cost and high-quality carbon fibers (CFs) from biorenewable lignin precursors has been of worldwide interest for decades. Although numerous works have been reported and the proposed "1.72 GPa/172 GPa" target set by the Department of Energy (DOE) has been closely met in a few studies, most lignin-based CFs (LCFs) have poor strength properties compared to industrial PAN (polyacrylonitrile)-based CFs. The production of LCFs involves several steps, and the final quality of LCFs is governed by both lignin's properties and the manufacturing processes. Therefore, understanding the key factors of producing high quality LCF is of high importance. In this review, we firstly outlined several lignin's properties (e.g., impurities, thermal properties, molecular structure) that may play important role in determining its processability and suitability as carbon fiber precursor. Secondly, conversion strategies include spinning, stabilization and carbonization, and corresponding parameters influencing the final quality of LCF are comprehensively analyzed. Last, additional characterization methods are proposed as a means to facilitate analyzing of lignin and LCF. This review attempts to provide insights towards high-quality LCF production from both material and manufacturing aspects.
Collapse
Affiliation(s)
- Wangda Qu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jianming Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianglan Bai
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Hong Jin
- Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, China.
| | - Meng Zhang
- Currently employed by Giti Tire Manufacturing, Richburg, SC, 29729, USA.
| |
Collapse
|
8
|
Jin Y, Lin J, Cheng Y, Lu C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3378. [PMID: 34207222 PMCID: PMC8234621 DOI: 10.3390/ma14123378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
As a major component of lignocellulosic biomass, lignin is one of the largest natural resources of biopolymers and, thus, an abundant and renewable raw material for products, such as high-performance fibers for industrial applications. Direct conversion of lignin has long been investigated, but the fiber spinning process for lignin is difficult and the obtained fibers exhibit unsatisfactory mechanical performance mainly due to the amorphous chemical structure, low molecular weight of lignin, and broad molecular weight distribution. Therefore, different textile spinning techniques, modifications of lignin, and incorporation of lignin into polymers have been and are being developed to increase lignin's spinnability and compatibility with existing materials to yield fibers with better mechanical performance. This review presents the latest advances in the textile fabrication techniques, modified lignin-based high-performance fibers, and their potential in the enhancement of the mechanical performance.
Collapse
Affiliation(s)
- Yanhong Jin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Cheng
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Sun X, Jin H, Qu W. Lignin-derived 3D porous graphene on carbon cloth for flexible supercapacitors. RSC Adv 2021; 11:19695-19704. [PMID: 35479212 PMCID: PMC9033565 DOI: 10.1039/d1ra01754c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, we reported a new method to fabricate flexible carbon-based supercapacitor electrodes derived from a commercialized and low-cost lignin. The fabrication process skips traditional stabilization/carbonization/activation for lignin-based carbon production. Also, the process reported here was green and facile, with minimum solvent use and no pretreatment required. Characterization of the lignin showed that it has common properties among all types of lignin. The lignin was impregnated on carbon cloth and then subjected to direct laser writing to form the desired electrodes (LLC). The results showed that lignin was successfully bonded to carbon cloth. The LLC has a good porous carbon structure with a high I G/I D ratio of 1.39, and a small interlayer spacing d 002 of 0.3436 nm, which are superior to most of the reported lignin-based carbons. Although not optimized, the fabricated LLC showed good supercapacitance behavior with an areal capacitance of 157.3 mF cm-2 at 0.1 mA cm-2. In addition, the superior flexibility of LLC makes it a promising electrode that can be used more widely in portable devices. Conceptually, this method can be generalized to all types of lignin and can define intriguing new research interests towards lignin applications.
Collapse
Affiliation(s)
- Xinzhi Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University Qingdao 266109 China
| | - Hong Jin
- Xi'an Jiaotong University Suzhou Academy Suzhou 215123 China
| | - Wangda Qu
- College of Life Sciences, Qingdao Agricultural University Qingdao 266109 China
| |
Collapse
|
10
|
Lignin addition to polyacrylonitrile copolymer solution and its effect on the properties of carbon fiber precursor. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02420-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Kundu CK, Li Z, Li X, Zhang Z, Hu Y. Graphene oxide functionalized biomolecules for improved flame retardancy of Polyamide 66 fabrics with intact physical properties. Int J Biol Macromol 2020; 156:362-371. [DOI: 10.1016/j.ijbiomac.2020.04.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 11/28/2022]
|
12
|
Thermal treatment of pyrolytic lignin and polyethylene terephthalate toward carbon fiber production. J Appl Polym Sci 2020. [DOI: 10.1002/app.48843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ghayur A, Verheyen TV. Modelling a biorefinery concept producing carbon fibre-polybutylene succinate composite foam. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Xu MX, Wu YC, Nan DH, Lu Q, Yang YP. Effects of gaseous agents on the evolution of char physical and chemical structures during biomass gasification. BIORESOURCE TECHNOLOGY 2019; 292:121994. [PMID: 31437799 DOI: 10.1016/j.biortech.2019.121994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Bio-char samples were prepared from gasification of corn straw under N2, CO2 and H2O conditions, and systematically characterized to reveal the effects of gaseous agents on the evolution of char structural features during the gasification process. The results showed that the increase of reacting temperature had positive effects on the gasification of char in both H2O and CO2 atmospheres. The evolution of char pore structures under H2O and CO2 was quite different. The formation of micropores was facilitated by CO2, while mesopores and macropores were developed more in H2O condition. Besides, char structures obtained at 800 °C were more ordered than those obtained at 600 °C. Compared with the longitudinal merging, the aromatic layers preferred to grow laterally. Moreover, the mechanisms of gasification between char and gaseous agents were different. CO2 preferred to react with amorphous carbon, while the cross-linked carbon was more likely to be consumed during char gasification with H2O.
Collapse
Affiliation(s)
- Ming-Xin Xu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Ya-Chang Wu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Dong-Hong Nan
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Qiang Lu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China.
| | - Yong-Ping Yang
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| |
Collapse
|
15
|
Gao Y, Qu W, Liu Y, Hu H, Cochran E, Bai X. Agricultural residue‐derived lignin as the filler of polylactic acid composites and the effect of lignin purity on the composite performance. J Appl Polym Sci 2019. [DOI: 10.1002/app.47915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yiwei Gao
- Department of Mechanical EngineeringIowa State University Ames Iowa 50011
| | - Wangda Qu
- Department of Mechanical EngineeringIowa State University Ames Iowa 50011
| | - Yang Liu
- Department of Aerospace EngineeringIowa State University Ames Iowa 50011
| | - Hui Hu
- Department of Aerospace EngineeringIowa State University Ames Iowa 50011
| | - Eric Cochran
- Department of Chemical and Biological EngineeringIowa State University Ames Iowa 50011
| | - Xianglan Bai
- Department of Mechanical EngineeringIowa State University Ames Iowa 50011
| |
Collapse
|
16
|
Dias OAT, Sain M, Cesarino I, Leão AL. Development of high bio-content polypropylene composites with different industrial lignins. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Mohini Sain
- Faculty of Forestry; University of Toronto; Toronto Ontario Canada
| | - Ivana Cesarino
- College of Agricultural Sciences; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Alcides Lopes Leão
- College of Agricultural Sciences; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| |
Collapse
|
17
|
Carbon Materials from Technical Lignins: Recent Advances. Top Curr Chem (Cham) 2018; 376:33. [DOI: 10.1007/s41061-018-0210-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|