1
|
Keskin B, Eryıldız B, Paşaoğlu ME, Türken T, Vatanpour V, Koyuncu I. Fabrication and characterization of different braid‐reinforced
PVC
hollow fiber membranes to use in membrane bioreactor for wastewater treatment. J Appl Polym Sci 2023. [DOI: 10.1002/app.53794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Başak Keskin
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Bahriye Eryıldız
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Mehmet Emin Paşaoğlu
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Türker Türken
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| | - Ismail Koyuncu
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| |
Collapse
|
2
|
Liu F, Li Y, Han L, Xu Z, Zhou Y, Deng B, Xing J. A Facile Strategy toward the Preparation of a High-Performance Polyamide TFC Membrane with a CA/PVDF Support Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4496. [PMID: 36558347 PMCID: PMC9785465 DOI: 10.3390/nano12244496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this study, polyamide (PA) thin-film composite (TFC) nanofiltration membranes were fabricated via interfacial polymerization on cellulose acetate (CA)/poly(vinylidene fluoride) (PVDF) support layers. Several types of CA/PVDF supports were prepared via the phase inversion method. With increasing CA, the PVDF membrane surface pore size decreased and hydrophilicity increased. The effect of the support properties on the performance and formation mechanism of PA films was systematically investigated via an interfacial polymerization (IP) process. The permselectivity of the resulting TFC membranes was evaluated using a MgSO4 solution. The results show that the desired polyamide TFC membrane exhibited excellent water flux (6.56 L/(m2·h·bar)) and bivalent salt ion rejection (>97%). One aim of this study is to explore how the support of CA/PVDF influences the IP process and the performance of PA film.
Collapse
Affiliation(s)
- Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Advanced Fiber Materials Engineering Research Center of Anhui Province, Anhui Polytechnic University, Wuhu 241000, China
| | - Yanyan Li
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Yuqi Zhou
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Bingyao Deng
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Xing
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
3
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
6
|
Liu F, Wang L, Li D, Liu Q, Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Adv 2019; 9:35417-35428. [PMID: 35528106 PMCID: PMC9074776 DOI: 10.1039/c9ra07114h] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023] Open
Abstract
The thin film composite (TFC) membrane prepared by interfacial polymerization (IP) on porous supports is currently one of the most efficient technologies for brackish water purification and seawater desalination, including reverse osmosis (RO), forward osmosis (FO), and nanofiltration (NF). Over the past decades, there have been intensive and continuous efforts in research of polyamide layers, while there is little information in the literature about the impact that physical–chemical properties and structure of support membranes have on the formation of composite membranes. This paper reviews the recent research progress of the supporting membrane, comprehensively summarizes the support role in polyamide formation, and provides good insight into TFC membrane research and development. In addition, we discuss several types of polymer supporting membranes and related modification methods to explore the appropriate supporting membrane for enhancing TFC membrane performance and extending the applications in the future. The thin film composite membrane prepared by interfacial polymerization on porous supports is currently one of the most efficient technologies for brackish water purification and seawater desalination, including reverse osmosis, forward osmosis and nanofiltration.![]()
Collapse
Affiliation(s)
- Feng Liu
- Laboratory for Advanced Nonwoven Technology
- Key Laboratory of Eco-Textiles
- Jiangnan University
- Ministry of Education
- Wuxi 214122
| | - LanLan Wang
- Laboratory for Advanced Nonwoven Technology
- Key Laboratory of Eco-Textiles
- Jiangnan University
- Ministry of Education
- Wuxi 214122
| | - Dawei Li
- Laboratory for Advanced Nonwoven Technology
- Key Laboratory of Eco-Textiles
- Jiangnan University
- Ministry of Education
- Wuxi 214122
| | - Qingsheng Liu
- Laboratory for Advanced Nonwoven Technology
- Key Laboratory of Eco-Textiles
- Jiangnan University
- Ministry of Education
- Wuxi 214122
| | - Bingyao Deng
- Laboratory for Advanced Nonwoven Technology
- Key Laboratory of Eco-Textiles
- Jiangnan University
- Ministry of Education
- Wuxi 214122
| |
Collapse
|