1
|
Song SH, Bae M, Oh JK. Durable Surface Modification of Low-Density Polyethylene/Nano-Silica Composite Films with Bacterial Antifouling and Liquid-Repelling Properties for Food Hygiene and Safety. Polymers (Basel) 2024; 16:292. [PMID: 38276700 PMCID: PMC10819097 DOI: 10.3390/polym16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The growing prevalence of antimicrobial resistance in bacterial strains has increased the demand for preventing biological deterioration on the surfaces of films used in applications involving food contact materials (FCMs). Herein, we prepared superhydrophobic film surfaces using a casting process that involved the combination of low-density polyethylene (LDPE) with solutions containing surface energy-reducing silica (SRS). The bacterial antifouling properties of the modified film surfaces were evaluated using Escherichia coli O157:H7 and Staphylococcus epidermidis via the dip-inoculation technique. The reduction in bacterial populations on the LDPE film embedded with SRS was confirmed to be more than 2 log-units, which equates to over 99%, when compared to the bare LDPE film. Additionally, the modified film demonstrated liquid-repelling properties against food-related contaminants, such as blood, beverages, and sauces. Moreover, the modified film demonstrated enhanced durability and robustness compared to one of the prevalent industry methods, dip-coating. We anticipate that the developed LDPE/nano-silica composite film represents a promising advancement in the multidisciplinary aspects of food hygiene and safety within the food industry, particularly concerning FCMs.
Collapse
Affiliation(s)
- Sang Ha Song
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Republic of Korea;
| | - Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Republic of Korea;
| |
Collapse
|
2
|
Acarer S. A review of microplastic removal from water and wastewater by membrane technologies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:199-219. [PMID: 37452543 PMCID: wst_2023_186 DOI: 10.2166/wst.2023.186] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) cannot be completely removed from water/wastewater in conventional wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). According to the literature analysis, membrane technologies, one of the advanced treatment technologies, are the most effective and promising technologies for MP removal from water and wastewater. In this paper, firstly, the properties of MPs commonly present in WWTPs/DWTPs and the MP removal efficiency of WWTPs/DWTPs are briefly reviewed. In addition, research studies on MP removal from water/wastewater by microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and membrane bioreactors (MBRs) are reviewed. In the next section, membrane filtration is compared with other methods used for MP removal from water/wastewater, and the advantages/disadvantages of the removal methods are discussed. Moreover, the problem of membrane fouling with MPs during filtration and the potential for MP release from polymeric membrane structure to water/wastewater are discussed. Finally, based on the studies in the literature, the current status and research deficiencies of MP removal by membrane technologies are identified, and recommendations are made for further studies.
Collapse
Affiliation(s)
- Seren Acarer
- Department of Environmental Engineering, Faculty of Engineering, İstanbul University-Cerrahpaşa, Avcılar, İstanbul 34320, Turkey E-mail:
| |
Collapse
|
3
|
Khdary NH, Almuarqab BT, El Enany G. Nanoparticle-Embedded Polymers and Their Applications: A Review. MEMBRANES 2023; 13:537. [PMID: 37233597 PMCID: PMC10220572 DOI: 10.3390/membranes13050537] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
There has been increasing interest in the study and development of nanoparticle-embedded polymeric materials and their applications to special membranes. Nanoparticle-embedded polymeric materials have been observed to have a desirable compatibility with commonly used membrane matrices, a wide range of functionalities, and tunable physicochemical properties. The development of nanoparticle-embedded polymeric materials has shown great potential to overcome the longstanding challenges faced by the membrane separation industry. One major challenge that has been a bottleneck to the progress and use of membranes is the balance between the selectivity and the permeability of the membranes. Recent developments in the fabrication of nanoparticle-embedded polymeric materials have focused on how to further tune the properties of the nanoparticles and membranes to improve the performance of the membranes even further. Techniques for improving the performance of nanoparticle-embedded membranes by exploiting their surface characteristics and internal pore and channel structures to a significant degree have been incorporated into the fabrication processes. Several fabrication techniques are discussed in this paper and used to produce both mixed-matrix membranes and homogenous nanoparticle-embedded polymeric materials. The discussed fabrication techniques include interfacial polymerization, self-assembly, surface coating, and phase inversion. With the current interest shown in the field of nanoparticle-embedded polymeric materials, it is expected that better-performing membranes will be developed soon.
Collapse
Affiliation(s)
- Nezar H. Khdary
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Basha T. Almuarqab
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia;
| |
Collapse
|
4
|
Liu F, Li Y, Han L, Xu Z, Zhou Y, Deng B, Xing J. A Facile Strategy toward the Preparation of a High-Performance Polyamide TFC Membrane with a CA/PVDF Support Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4496. [PMID: 36558347 PMCID: PMC9785465 DOI: 10.3390/nano12244496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this study, polyamide (PA) thin-film composite (TFC) nanofiltration membranes were fabricated via interfacial polymerization on cellulose acetate (CA)/poly(vinylidene fluoride) (PVDF) support layers. Several types of CA/PVDF supports were prepared via the phase inversion method. With increasing CA, the PVDF membrane surface pore size decreased and hydrophilicity increased. The effect of the support properties on the performance and formation mechanism of PA films was systematically investigated via an interfacial polymerization (IP) process. The permselectivity of the resulting TFC membranes was evaluated using a MgSO4 solution. The results show that the desired polyamide TFC membrane exhibited excellent water flux (6.56 L/(m2·h·bar)) and bivalent salt ion rejection (>97%). One aim of this study is to explore how the support of CA/PVDF influences the IP process and the performance of PA film.
Collapse
Affiliation(s)
- Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Advanced Fiber Materials Engineering Research Center of Anhui Province, Anhui Polytechnic University, Wuhu 241000, China
| | - Yanyan Li
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Yuqi Zhou
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Bingyao Deng
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Xing
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
5
|
Hashemi T, Mehrnia MR, Marandi A, Ismail AF. Influence of magnetic casting on the permeability and anti‐fouling properties of a novel iron oxide/alumina/polysulfone mixed matrix membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Targol Hashemi
- School of Chemical Engineering University College of Engineering, University of Tehran Tehran Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering University College of Engineering, University of Tehran Tehran Iran
| | - Aydin Marandi
- School of Chemical Engineering University College of Engineering, University of Tehran Tehran Iran
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| |
Collapse
|
6
|
Acarer S, Pir İ, Tüfekci M, Erkoç T, Öztekin V, Dikicioğlu C, Demirkol GT, Durak SG, Özçoban MŞ, Çoban TYT, Çavuş S, Tüfekci N. Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213721. [PMID: 36364496 PMCID: PMC9657008 DOI: 10.3390/nano12213721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/12/2023]
Abstract
In this study, neat polyacrylonitrile (PAN) and fumed silica (FS)-doped PAN membranes (0.1, 0.5 and 1 wt% doped PAN/FS) are prepared using the phase inversion method and are characterised extensively. According to the Fourier Transform Infrared (FTIR) spectroscopy analysis, the addition of FS to the neat PAN membrane and the added amount changed the stresses in the membrane structure. The Scanning Electron Microscope (SEM) results show that the addition of FS increased the porosity of the membrane. The water content of all fabricated membranes varied between 50% and 88.8%, their porosity ranged between 62.1% and 90%, and the average pore size ranged between 20.1 and 21.8 nm. While the neat PAN membrane's pure water flux is 299.8 L/m2 h, it increased by 26% with the addition of 0.5 wt% FS. Furthermore, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques are used to investigate the membranes' thermal properties. Finally, the mechanical characterisation of manufactured membranes is performed experimentally with tensile testing under dry and wet conditions. To be able to provide further explanation to the explored mechanics of the membranes, numerical methods, namely the finite element method and Mori-Tanaka mean-field homogenisation are performed. The mechanical characterisation results show that FS reinforcement increases the membrane rigidity and wet membranes exhibit more compliant behaviour compared to dry membranes.
Collapse
Affiliation(s)
- Seren Acarer
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, İstanbul 34320, Turkey
| | - İnci Pir
- Faculty of Mechanical Engineering, Istanbul Technical University, İstanbul 34437, Turkey
| | - Mertol Tüfekci
- South Kensington Campus, Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Tuğba Erkoç
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, İstanbul 34320, Turkey
| | - Vehbi Öztekin
- Faculty of Mechanical Engineering, Istanbul Technical University, İstanbul 34437, Turkey
| | - Can Dikicioğlu
- Faculty of Mechanical Engineering, Istanbul Technical University, İstanbul 34437, Turkey
| | - Güler Türkoğlu Demirkol
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, İstanbul 34320, Turkey
| | - Sevgi Güneş Durak
- Department of Environmental Engineering, Faculty of Engineering-Architecture, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey
| | - Mehmet Şükrü Özçoban
- Faculty of Civil Engineering, Yıldız Technical University, İstanbul 34220, Turkey
| | - Tuba Yelda Temelli Çoban
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, İstanbul 34320, Turkey
| | - Selva Çavuş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, İstanbul 34320, Turkey
| | - Neşe Tüfekci
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, İstanbul 34320, Turkey
| |
Collapse
|
7
|
Ngo THA, Pham HT, Nguyen VD, Duong QX, Le PDT, Do NH, Dao DS. Characterization of polyamide thin film composite membranes incorporated silver nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.53175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thu Hong Anh Ngo
- Faculty of Chemistry, VNU University of Science Vietnam National University Hanoi Vietnam
| | - Hien Thanh Pham
- Faculty of Biology, VNU University of Science Vietnam National University Hanoi Vietnam
| | - Vuong Duy Nguyen
- Faculty of Biology, VNU University of Science Vietnam National University Hanoi Vietnam
| | - Quan Xuan Duong
- Faculty of Chemistry, VNU University of Science Vietnam National University Hanoi Vietnam
| | - Phuong Duy Tu Le
- Faculty of Chemistry, VNU University of Science Vietnam National University Hanoi Vietnam
| | | | - Duc Sy Dao
- Faculty of Chemistry, VNU University of Science Vietnam National University Hanoi Vietnam
| |
Collapse
|
8
|
A Biodegradable Polymer-Based Plastic Chip Electrode as a Current Collector in Supercapacitor Application. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here, we report the performance of a biodegradable polymer-based Plastic chip Electrode (PCE) as a current collector in supercapacitor applications. Its production was evaluated using two redox materials (conducting polymers polyaniline and poly(3,4-ethylene dioxythiophene)) and a layered material, rGO. The conducting polymers were directly deposited over the Eco-friendly PCE (EPCE) using the galvanostatic method. The rGO was prepared in the conventional way and loaded over the EPCE using a binder. Both conducting polymers and rGO showed proper specific capacitance compared to previous studies with regular current collectors. Electrodes were found highly stable during experiments in high acidic medium. The supercapacitive performance was evaluated with cyclic voltammetry, charge–discharge measurements, and impedance spectroscopy. The supercapacitive materials were also characterized for their electrical and microscopic properties. Polyaniline and PEDOT were deposited over EPCEs showing >150 Fg−1 and >120 Fg−1 specific capacitance, respectively, at 0.5 Ag−1. rGO continued to show higher particular capacitance of >250 Fg−1 with excellent charge–discharge cyclic stability. The study concludes that EPCs can be used as promising electrodes for electrical energy storage applications.
Collapse
|
9
|
Tang Y, Cao L, Xu L, Wang Z, Shi Q, Zhang Y, Yu L. Dependable Performance of Thin Film Composite Nanofiltration Membrane Tailored by Capsaicin-Derived Self-Polymer. Polymers (Basel) 2022; 14:polym14091671. [PMID: 35566841 PMCID: PMC9103837 DOI: 10.3390/polym14091671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
To address trade-off and membrane-fouling challenges during the development of nanofiltration membranes, a thin-film composite membrane was prepared on the basis of interfacial polymerization regulated by adjusting the capsaicin-derived self-polymer poly N-(2-hydroxy-5-(methylthio) benzyl) acrylamide (PHMTBA) on the polysulfone substrate in this study. Through the self-polymerization of the monomer HMTBA with varied contents, microwave-assisted technology was employed to develop a variety of PHMTBAs. It was discovered that PHMTBA is involved in the interfacial polymerization process. Piperazine and PHMTBA competed for the reaction with trimesoyl chloride, resulting in a flatter and looser membrane surface. The PHMTBA-modified membrane presented a typical double-layer structure: a thicker support layer and a thinner active layer. The addition of PHMTBA to membranes improved their hydrophilicity and negative charge density. As a result, the PHMTBA-modified membrane showed dependable separation performance (water flux of 159.5 L m−2 h−1 and rejection of 99.02% for Na2SO4) as well as enhanced anti-fouling properties (flux recovery ratio of more than 100% with bovine serum albumin-fouling and antibacterial efficiency of 93.7% against Escherichia coli). The performance of the prepared membranes was superior to that of most other modified TFC NF membranes previously reported in the literature. This work presents the application potential of capsaicin derivatives in water treatment and desalination processes.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China; (Y.T.); (L.C.); (Z.W.); (Q.S.)
| | - Lu Cao
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China; (Y.T.); (L.C.); (Z.W.); (Q.S.)
| | - Li Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Zhaoyu Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China; (Y.T.); (L.C.); (Z.W.); (Q.S.)
| | - Qian Shi
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China; (Y.T.); (L.C.); (Z.W.); (Q.S.)
| | - Yingying Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China; (Y.T.); (L.C.); (Z.W.); (Q.S.)
- Correspondence: (Y.Z.); (L.Y.)
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Correspondence: (Y.Z.); (L.Y.)
| |
Collapse
|
10
|
Chudasama NA, Polisetti V, Maity TK, Reddy AVR, Prasad K. Preparation of seaweed polysaccharide based hydrophobic composite membranes for the separation of oil/water emulsion and protein. Int J Biol Macromol 2021; 199:36-41. [PMID: 34971639 DOI: 10.1016/j.ijbiomac.2021.12.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
Agarose is a seaweed-based polysaccharide and is widely used for the separation of nucleic acids in molecular biology. Cross-linked agarose beads are also used as solid-phase matrices in size exclusion chromatography for the separation of proteins. To find the application of agarose for the separation of oil/water emulsion and protein, herein hydrophobic derivative of the seaweed biopolymer [MW (1.27 ± 0.17) × 10 5 g/mol; sulphate content (0.29 ± 0.09) %, gel strength (2242 ± 21) g/cm2] is prepared by reacting the biopolymer with stearic acid and was used to prepare a composite membrane on polyester fabric. The oil and BSA rejection performance of the composite membrane was greater than 98%. The rejection rate increased with the increase in polymer content in the respective membranes for both oil/water and protein separation. The composite membrane showed a stable oil/water emulsion and protein separation performance over a period of six hours. Due to the biodegradable nature of the major components of the membrane, it has the potential for industrial applications.
Collapse
Affiliation(s)
- Nishith A Chudasama
- P. D. Patel Institute of Applied Sciences, Charotar University of Sciences and Technology, Changa 388421, India; Natural Products & Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India
| | - Veerababu Polisetti
- Membrane Science and Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India.
| | - Tapan Kumar Maity
- Natural Products & Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - A V R Reddy
- Membrane Science and Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India.
| | - Kamalesh Prasad
- Natural Products & Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|