1
|
Aykora D, Oral A, Aydeğer C, Uzun M. 3D Bioprinting Strategies for Melatonin‐Loaded Polymers in Bone Tissue Engineering. MACROMOLECULAR MATERIALS AND ENGINEERING 2025; 310. [DOI: 10.1002/mame.202400263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 05/14/2025]
Abstract
AbstractBone pathologies are still among the most challenging issues for orthopedics. Over the past decade, different methods are developed for bone repair. In addition to advanced surgical and graft techniques, polymer‐based biomaterials, bioactive glass, chitosan, hydrogels, nanoparticles, and cell‐derived exosomes are used for bone healing strategies. Owing to their variation and promising advantages, most of these methods are not translated into clinical practice. Three dimensonal (3D) bioprinting is an additive manufacturing technique that has become a next‐generation biomaterial technique adapted for anatomic modeling, artificial tissue or organs, grafting, and bridging tissues. Polymer‐based biomaterials are mostly used for the controlled release of various drugs, therapeutic agents, mesenchymal stem cells, ions, and growth factors. Polymers are now among the most preferable materials for 3D bioprinting. Melatonin is a well‐known antioxidant with many osteoinductive properties and is one of the key hormones in the brain–bone axis. 3D bioprinted melatonin‐loaded polymers with unique lipophilic, anti‐inflammatory, antioxidant, and osteoinductive properties for filling large bone gaps following fractures or congenital bone deformities may be developed in the future. This study summarized the benefits of 3D bioprinted and polymeric materials integrated with melatonin for sustained release in bone regeneration approaches.
Collapse
Affiliation(s)
- Damla Aykora
- Vocational School of Health Services, Bitlis Eren University Bitlis 13000 Türkiye
| | - Ayhan Oral
- Faculty of Science Department of Chemistry Çanakkale Onsekiz Mart University Çanakkale 17100 Türkiye
| | - Cemre Aydeğer
- Faculty of Medicine Department of Physiology Çanakkale Onsekiz Mart University Çanakkale 17100 Türkiye
| | - Metehan Uzun
- Faculty of Medicine Department of Physiology Çanakkale Onsekiz Mart University Çanakkale 17100 Türkiye
| |
Collapse
|
2
|
Sánchez-Cepeda A, Pazos MC, Leonardo PA, Ingrid SC, Correa-Araujo LS, María de Lourdes CG, Vera-Graziano R. Functionalization of 3D printed poly(lactic acid)/graphene oxide/β-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application. RSC Adv 2024; 14:39804-39819. [PMID: 39697249 PMCID: PMC11651288 DOI: 10.1039/d4ra05889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The challenge of bone tissue regeneration implies the use of new advanced technologies for the manufacture of polymeric matrices, with 3D printing technology being a suitable option for tissue engineering due to its low processing cost, its simple operation and the wide use of biomaterials in biomedicine. Among the biopolymers used to obtain porous scaffolds, poly(lactic acid) (PLA) stands out due its mechanical and biodegradability properties, although its low bioactivity to promote bone regeneration is a great challenge. In this research, a 3D scaffold based on PLA reinforced with bioceramics such as graphene oxide (GO) and β-tricalcium phosphate (TCP) was designed and characterized by FTIR, XRD, DSC, SEM and mechanical tests. The in vitro biocompatibility, viability, and cell proliferation of the poly-l-lysine (POLYL) functionalized scaffold were investigated using Wharton Jelly mesenchymal stem cells (hWJ-MSCs) and confirmed by XPS. The incorporation of GO/TCP bioceramics into the PLA polymer matrix increased the mechanical strength and provided a thermal barrier during the fusion treatments that the polymeric material undergoes during its manufacturing. The results show that the functionalization of the scaffold with POLYL allows improving the cell adhesion, proliferation and differentiation of hWJ-MSCs. The resulting scaffold PLA/GO/TCP/POLYL exhibits enhanced structural integrity and osteogenic cues, rendering it a promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Angela Sánchez-Cepeda
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - M Carolina Pazos
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa Tunja Boyacá Colombia
| | - Prieto-Abello Leonardo
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Silva-Cote Ingrid
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Luz Stella Correa-Araujo
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Chávez García María de Lourdes
- Facultad de Química, Laboratorio de Materiales Cerámicos, Universidad Nacional Autónoma de México UNAM Avda. Universidad 3000, C.U. Coyoacán Ciudad de México 04510 Mexico
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Av. Universidad, C.U. Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
3
|
Harb SV, Kolanthai E, Pinto LA, Beatrice CAG, Bezerra EDOT, Backes EH, Costa LC, Seal S, Pessan LA. Additive manufacturing of bioactive and biodegradable poly (lactic acid)-tricalcium phosphate scaffolds modified with zinc oxide for guided bone tissue repair. Biomed Mater 2024; 19:055018. [PMID: 38986475 DOI: 10.1088/1748-605x/ad61a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 μm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.
Collapse
Affiliation(s)
- Samarah V Harb
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Leonardo A Pinto
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Cesar A G Beatrice
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ewerton de O T Bezerra
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Eduardo H Backes
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lidiane C Costa
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States of America
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Luiz A Pessan
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
4
|
Thompson C, Domínguez G, Bardisa P, Liu Y, Fernández-Blázquez JP, Del Río JS, Echeverry-Rendon M, González C, Llorca J. Medical grade 3D printable bioabsorbable PLDL/Mg and PLDL/Zn composites for biomedical applications. J Biomed Mater Res A 2024; 112:798-811. [PMID: 38146214 DOI: 10.1002/jbm.a.37660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
Medical grade PLDL, PLDL/Mg and PLDL/Zn filaments were manufactured by a dual extrusion method and used to prepare coupons and scaffolds with controlled porosity by fused filament fabrication. The mechanical properties, degradation mechanisms and biological performance were carefully analyzed. It was found that the presence of 4 vol.% of Mg and Zn particles did not substantially modify the mechanical properties but accelerated the degradation rate of PLDL. Moreover, the acidification of the pH due to degradation of the PLDL was reduced in the presence of metallic particles. Finally, cell adhesion and proliferation were excellent in the medical grade PLDL as well as in the polymer/metal composites. These results demonstrate the potential of bioabsorbable metal/polymer composites to tailor the mechanical properties, degradation rate and biocompatibility for specific clinical applications.
Collapse
Affiliation(s)
- Cillian Thompson
- IMDEA Materials Institute, Getafe, Spain
- Department of Material Science and Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| | - Guillermo Domínguez
- IMDEA Materials Institute, Getafe, Spain
- Department of Material Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| | - Pilar Bardisa
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Universidad Politécnica de Madrid, Madrid, Spain
| | - Yuyao Liu
- IMDEA Materials Institute, Getafe, Spain
- Department of Material Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| | | | - José Sánchez Del Río
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Carlos González
- IMDEA Materials Institute, Getafe, Spain
- Department of Material Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier Llorca
- IMDEA Materials Institute, Getafe, Spain
- Department of Material Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Thompson C, González C, LLorca J. Additively-manufactured Mg wire-reinforced PLDL-matrix composites for biomedical applications. J Mech Behav Biomed Mater 2024; 153:106496. [PMID: 38460456 DOI: 10.1016/j.jmbbm.2024.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Coupons of a medical grade PLDL polymer matrix uniaxially reinforced with a 15% volume fraction of Mg wires have been manufactured by fused filament fabrication for the first time. Two different types of Mg wires, without and with a surface treatment by plasma electrolytic oxidation were used. Both composite materials were subjected to degradation in phosphate buffer solution over a 3-week period, and their degradation and deformation micromechanisms were analysed in detail. Additionally, the materials were subjected to extensive mechanical testing under various loading conditions, and the interface strength was also analysed. It was found that the presence of the Mg wires improves the mechanical behaviour and accelerates the corrosion rate of the composite with respect that of the polymer matrix and these properties can be further tailored through the surface-modification of Mg wires by plasma electrolytic oxidation. The additive manufacturing strategy presented opens the path to fabricate multimaterial implants and scaffolds with complex shape and tailored properties provided by biodegradable polymers reinforced with either Mg and Zn particles and/or wires.
Collapse
Affiliation(s)
- C Thompson
- IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain; Department of Material Science and Engineering, Universidad Carlos III de Madrid, 28911, Leganés, Madrid, Spain
| | - C González
- IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain; Department of Material Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain
| | - J LLorca
- IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain; Department of Material Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Ftiti S, Cifuentes SC, Guidara A, Rams J, Tounsi H, Fernández-Blázquez JP. The Structural, Thermal and Morphological Characterization of Polylactic Acid/Β-Tricalcium Phosphate (PLA/Β-TCP) Composites upon Immersion in SBF: A Comprehensive Analysis. Polymers (Basel) 2024; 16:719. [PMID: 38475402 PMCID: PMC10934208 DOI: 10.3390/polym16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Biocomposite films based on PLA reinforced with different β-TCP contents (10%, 20%, and 25%wt.) were fabricated via solvent casting and immersed in SBF for 7, 14, and 21 days. The bioactivity, morphological, and thermal behavior of composites with immersion were studied using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, weight loss (WL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC). This broad analysis leads to a deeper understanding of the evolution of the polymer-filler interaction with the degradation of the biocomposites. The results showed that β-TCP gradually evolved into carbonated hydroxyapatite as the immersion time increased. This evolution affected the interaction of β-TCP with PLA. PLA and β-TCP interactions differed from PLA and carbonated hydroxyapatite interactions. It was observed that β-TCP inhibited PLA hydrolysis but accelerated the thermal degradation of the polymer. β-TCP retarded the cold crystallization of PLA and hindered its crystallinity. However, after immersion in SBF, particles accelerated the cold crystallization of PLA. Therefore, considering the evolution of β-TCP with immersion in SBF is crucial for an accurate analysis of the biocomposites' degradation. These findings enhance the comprehension of the degradation mechanism in PLA/β-TCP, which is valuable for predicting the degradation performance of PLA/β-TCP in medical applications.
Collapse
Affiliation(s)
- Sondes Ftiti
- Laboratory of Advanced Materials (LR01ES26), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (S.F.); (A.G.); (H.T.)
| | - Sandra C. Cifuentes
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos (URJC), 28933 Móstoles, Spain;
| | - Awatef Guidara
- Laboratory of Advanced Materials (LR01ES26), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (S.F.); (A.G.); (H.T.)
| | - Joaquín Rams
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos (URJC), 28933 Móstoles, Spain;
| | - Hassib Tounsi
- Laboratory of Advanced Materials (LR01ES26), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (S.F.); (A.G.); (H.T.)
| | | |
Collapse
|
7
|
Harb SV, Kolanthai E, Pugazhendhi AS, Beatrice CA, Pinto LA, Neal CJ, Backes EH, Nunes AC, Selistre-de-Araújo HS, Costa LC, Coathup MJ, Seal S, Pessan LA. 3D printed bioabsorbable composite scaffolds of poly (lactic acid)-tricalcium phosphate-ceria with osteogenic property for bone regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100086. [PMID: 38213985 PMCID: PMC10776431 DOI: 10.1016/j.bbiosy.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024] Open
Abstract
The fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- β-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO2 nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds. The nanocomposite scaffolds possessed precise structure with fine print resolution, a homogenous distribution of TCP and CeNP components, and mechanical properties appropriate for bone tissue engineering applications. Cell proliferation assays using osteoblast cultures confirmed the cytocompatibility of the composites. In addition, the presence of CeNPs enhanced the proliferation and differentiation of mesenchymal stem cells; thereby, increasing alkaline phosphatase (ALP) activity, calcium deposition and bone-related gene expression. Results from this study have shown that the 3D printed PLA-TCP-10%CeO2 composite scaffold could be used as an alternative polymeric implant for bone tissue engineering applications: avoiding additional/revision surgeries and accelerating the regenerative process.
Collapse
Affiliation(s)
- Samarah V. Harb
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | - Cesar A.G. Beatrice
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Leonardo A. Pinto
- Graduate Program in Materials Science and Engineering, Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H. Backes
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ana C.C. Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | - Lidiane C. Costa
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Melanie J. Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz A. Pessan
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
8
|
Harb SV, Kolanthai E, Backes EH, Beatrice CAG, Pinto LA, Nunes ACC, Selistre-de-Araújo HS, Costa LC, Seal S, Pessan LA. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Tissue Eng Regen Med 2024; 21:223-242. [PMID: 37856070 PMCID: PMC10825090 DOI: 10.1007/s13770-023-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of β-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.
Collapse
Affiliation(s)
- Samarah V Harb
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H Backes
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Cesar A G Beatrice
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Leonardo A Pinto
- Department of Materials Engineering (DEMa), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ana Carolina C Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Heloisa S Selistre-de-Araújo
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Lidiane C Costa
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz Antonio Pessan
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
9
|
Alonso-Fernández I, Haugen HJ, López-Peña M, González-Cantalapiedra A, Muñoz F. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Acta Biomater 2023; 168:1-21. [PMID: 37454707 DOI: 10.1016/j.actbio.2023.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
3D-printed composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. The aim of the study was to systematically review the feasibility of using PLA/bioceramic composite scaffolds manufactured by 3D-printing technologies as bone grafting materials in preclinical in vivo studies. Electronic databases were searched using specific search terms, and thirteen manuscripts were selected after screening. The synthesis of the scaffolds was carried out using mainly extrusion-based techniques. Likewise, hydroxyapatite was the most used bioceramic for synthesizing composites with a PLA matrix. Among the selected studies, seven were conducted in rats and six in rabbits, but the high variability that exists regarding the experimental process made it difficult to compare them. Regarding the results, PLA/Bioceramic composite scaffolds have shown to be biocompatible and mechanically resistant. Preclinical studies elucidated the ability of the scaffolds to be used as bone grafts, allowing bone growing without adverse reactions. In conclusion, PLA/Bioceramics scaffolds have been demonstrated to be a promising alternative for treating bone defects. Nevertheless, more care should be taken when designing and performing in vivo trials, since the lack of standardization of the processes, which prevents the comparison of the results and reduces the quality of the information. STATEMENT OF SIGNIFICANCE: 3D-printed polylactic acid/bioceramic composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. Since preclinical in vivo studies with animal models represent a mandatory step for clinical translation, the present manuscript analyzed and discussed not only those aspects related to the selection of the bioceramic material, the synthesis of the implants and their characterization. But provides a new approach to understand how the design and perform of clinical trials, as well as the selection of the analysis methods, may affect the obtained results, by covering authors' knowledgebase from veterinary medicine to biomaterial science. Thus, this study aims to systematically review the feasibility of using polylactic acid/bioceramic scaffolds as grafting materials in preclinical trials.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| |
Collapse
|
10
|
de Melo Morgado GF, de Moura NK, Martins EF, Escanio CA, Backes EH, Marini J, Passador FR. Effect of blend ratio on thermal, mechanical, and shape memory properties of poly (lactic acid)/thermoplastic polyurethane bio-blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Mocanu AC, Miculescu F, Dascălu CA, Voicu ȘI, Pandele MA, Ciocoiu RC, Batalu D, Dondea S, Mitran V, Ciocan LT. Influence of Ceramic Particles Size and Ratio on Surface-Volume Features of the Naturally Derived HA-Reinforced Filaments for Biomedical Applications. J Funct Biomater 2022; 13:199. [PMID: 36278668 PMCID: PMC9590078 DOI: 10.3390/jfb13040199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The intersection of the bone tissue reconstruction and additive manufacturing fields promoted the advancement to a prerequisite and new feedstock resource for high-performance bone-like-scaffolds manufacturing. In this paper, the proposed strategy was directed toward the use of bovine-bone-derived hydroxyapatite (HA) for surface properties enhancement and mechanical features reinforcement of the poly(lactic acid) matrix for composite filaments extrusion. The involvement of completely naturally derived materials in the technological process was based on factors such as sustainability, low cost, and a facile and green synthesis route. After the HA isolation and extraction from bovine bones by thermal processing, milling, and sorting, two dependent parameters—the HA particles size (<40 μm, <100 μm, and >125 μm) and ratio (0−50% with increments of 10%)—were simultaneously modulated for the first time during the incorporation into the polymeric matrix. The resulting melt mixtures were divided for cast pellets and extruded filaments development. Based on the obtained samples, the study was further designed to examine several key features by complementary surface−volume characterization techniques. Hence, the scanning electron microscopy and micro-CT results for all specimens revealed a uniform and homogenous dispersion of HA particles and an adequate adhesion at the ceramic/polymer interface, without outline pores, sustained by the shape and surface features of the synthesized ceramic particles. Moreover, an enhanced wettability (contact angle in the ~70−21° range) and gradual mechanical takeover were indicated once the HA ratio increased, independent of the particles size, which confirmed the benefits and feasibility of evenly blending the natural ceramic/polymeric components. The results correlation led to the selection of optimal technological parameters for the synthesis of adequate composite filaments destined for future additive manufacturing and biomedical applications.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Cătălina-Andreea Dascălu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Mădălina-Andreea Pandele
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Robert-Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Dan Batalu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Sorina Dondea
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street., 020022 Bucharest, Romania
| |
Collapse
|
12
|
Maldonado MP, Pinto GM, Costa LC, Fechine GJM. Enhanced thermally conductive TPU/graphene filaments for 3D printing produced by melt compounding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mário P. Maldonado
- Mackenzie Institute for Research in Graphene and Nanotechnologies‐MackGraphe Mackenzie Presbyterian University São Paulo Brazil
| | - Gabriel M. Pinto
- Mackenzie Institute for Research in Graphene and Nanotechnologies‐MackGraphe Mackenzie Presbyterian University São Paulo Brazil
| | - Lidiane Cristina Costa
- Department of Materials Engineering at UFSCar, PPGCEM/UFSCar and CCDM/UFSCar São Carlos Brazil
| | - Guilhermino J. M. Fechine
- Mackenzie Institute for Research in Graphene and Nanotechnologies‐MackGraphe Mackenzie Presbyterian University São Paulo Brazil
| |
Collapse
|
13
|
Elhattab K, Bhaduri SB, Sikder P. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite. Polymers (Basel) 2022; 14:1222. [PMID: 35335552 PMCID: PMC8952643 DOI: 10.3390/polym14061222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
The primary goal of this study is to develop and analyze 3D printed structures based on a well-known composite known as β-Tricalcium Phosphate (TCP)- polylactic acid (PLA). There are some interesting aspects of this study. First, we developed 3D printable TCP-PLA composite filaments in-house, with high reproducibility, by a one-step process method using a single screw extruder. Second, we explored the physicochemical properties of the developed TCP-PLA composite filaments. Third, we investigated the effect of an FDM-based nozzle temperature of 190 °C, 200 °C, 210 °C, and 220 °C on the composite's crystallinity and rheological and mechanical properties. Results confirmed the successful development of constant-diameter TCP-PLA composite filaments with a homogeneous distribution of TCP particles in the PLA matrix. We observed that a higher nozzle temperature in the FDM process increased the crystallinity of the printed PLA and TCP-PLA structures. As a result, it also helped to enhance the mechanical properties of the printed structures. The rheological studies were performed in the same temperature range used in the actual FDM process, and results showed an improvement in rheological properties at higher nozzle temperatures. The bare polymer and the composite polymer-ceramic melts exhibited lower viscosity and less rigidity at higher nozzle temperatures, which resulted in enhancing the polymer melt flowability and interlayer bonding between the printed layers. Overall, our results confirmed that 3D printable TCP-PLA filaments could be made in-house, and optimization of the nozzle temperature is essential to developing 3D printed composite parts with favorable mechanical properties.
Collapse
Affiliation(s)
- Karim Elhattab
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA;
| | - Sarit B. Bhaduri
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA;
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, VA 22314, USA
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, USA;
| |
Collapse
|
14
|
Razali MS, Khimeche K, Melouki R, Boudjellal A, Vroman I, Alix S, Ramdani N. Preparation and properties enhancement of poly(lactic acid)/calcined‐seashell biocomposites for
3D
printing applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Kamel Khimeche
- Process Engineering Laboratory Polytechnic Military School Algiers Algeria
| | - Redouane Melouki
- Macromolecular Chemistry Laboratory Polytechnic Military School Algiers Algeria
| | - Ammar Boudjellal
- Process Engineering Laboratory Polytechnic Military School Algiers Algeria
| | - Isabelle Vroman
- Institut de Thermique, Mécanique, Matériaux Université de Reims Champagne Ardenne Reims France
| | - Sébastien Alix
- Institut de Thermique, Mécanique, Matériaux Université de Reims Champagne Ardenne Reims France
| | - Noureddine Ramdani
- Polymer Materials Research Center, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| |
Collapse
|
15
|
Badwelan M, Alkindi M, Alghamdi O, Saeed WS, Al-Odayni AB, Alrahlah A, Aouak T. Poly(δ-valerolactone)/Poly(ethylene-co-vinylalcohol)/β-Tri-calcium Phosphate Composite as Scaffolds: Preparation, Properties, and In Vitro Amoxicillin Release. Polymers (Basel) 2020; 13:E46. [PMID: 33374480 PMCID: PMC7795067 DOI: 10.3390/polym13010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Two poly(δ-valerolactone)/poly(ethylene-co-vinylalcohol)/beta-tricalcium phosphate (PEVAL/PDVAL/β-TCP) composites containing an equal ratio of polymer and filled with 50 and 70 wt% of β-TCP microparticles were prepared by the solvent casting method. Interconnected pores were realized using the salt leached technique, and the porosity of the resulted composites was evaluated by the scanning electron microscopy (SEM) method. The homogeneity of the hybrid materials was investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The prepared materials' SEM images showed interconnected micropores that respond to the conditions required to allow their uses as scaffolds. The porosity of each scaffold was determined from micro computed tomography (micro-CT) data, and the analysis of the mechanical properties of the prepared materials was studied through the stress-strain compressive test. The proliferation test results used human mesenchymal stem cells (MSCs) to grow and proliferate on the different types of prepared materials, reflecting that the hybrid materials were non-toxic and could be biologically acceptable scaffolds. The antibacterial activity test revealed that incorporation of amoxicillin in the specimens could inhibit the bacterial growth of S. aureus. The in vitro study of the release of amoxicillin from the PEVAL/PDVAL/amoxicillin and PEVAL/PDVAL/β-TCP/amoxicillin drug carrier systems in pH media 7.4, during eight days, gave promising results, and the antibiotic diffusion in these scaffolds obeys the Fickian model.
Collapse
Affiliation(s)
- Mohammed Badwelan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.B.); (M.A.); (O.A.)
| | - Mohammed Alkindi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.B.); (M.A.); (O.A.)
| | - Osama Alghamdi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.B.); (M.A.); (O.A.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (A.A.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (A.A.)
| | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (A.A.)
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|