1
|
Bhat MP, Lee JH, Kurkuri M, Chen T, Kim CS, Lee KH. Diatom contained alginate-chitosan hydrogel beads with enhanced hydrogen bonds and ionic interactions for extended release of gibberellic acid. Int J Biol Macromol 2025; 291:138906. [PMID: 39710021 DOI: 10.1016/j.ijbiomac.2024.138906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Hydrogels in agriculture offer controlled release, however, face issues with rapid disintegration, swift release, and inability to protect active ingredients. To overcome this, the study presents a hydrogel delivery system that uses dopamine-functionalized nanoporous diatom (DE-PDA) microparticles entrapped in alginate and chitosan matrices to deliver plant growth hormone, gibberellic acid (GA) that suffers from instability, limiting its field application. Developed GA@hydrogel beads exhibited an encapsulation efficiency of 85.2 % and demonstrated thermal and functional properties that suggested complex interactions between biopolymers. They showed enhanced stability, retention, and extended release for GA, improving tomato seed germination and plant growth. The GA release was governed by Fickian diffusion and the polymer relaxation with 86.3 % release by the 15th day, with a high swelling rate compared to a system without DE-PDA that only sustained GA release for 5 h. The GA@hydrogel system boosts tomato seed germination rates to 100 % on the third day for a 0.05 % GA@hydrogel formulation, demonstrating enhanced seedling growth. Also, they prove more effective than free GA in increasing the physiological parameters of tomato plants. Further, the pot experiments show enhanced plant growth, suggesting a new trend of GA delivery to plants through soil.
Collapse
Affiliation(s)
- Mahesh P Bhat
- AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Ho Lee
- AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mahaveer Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed to be University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Tean Chen
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kyeong-Hwan Lee
- AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Ferreira DCM, Rodrigues CS, Coimbra JSDR, de Oliveira EB. Delivery and controlled release abilities of chitosan/carboxymethylcellulose micropolyelectrolyte complexes (PECs) toward niacinamide (vitamin B3). Int J Biol Macromol 2024; 283:137848. [PMID: 39566762 DOI: 10.1016/j.ijbiomac.2024.137848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
The administration of bioactive compounds presents challenges due to the numerous physiological barriers in the gastrointestinal tract. To deal with one of these challenges, chitosan (CHS)/carboxymethylcellulose (CMC) micropolyelectrolyte complexes (micro-PECs) were developed without the use of crosslinking agents to carry niacinamide, a model hydrophilic bioactive agent. A Box-Behnken design was used to study the effects of processing time (X1 = 60, 120 or 180 min), pH (X2 = 3, 4 or 5) and niacinamide concentration (X3 = 0.02, 0.04 and 0.06, g·L-1) on the encapsulation efficiency (Y1) and loading capacity (Y2) of niacinamide by CMC/CHS micro-PECs. The encapsulation efficiency (Y1) varied from 0.86 % to 80.78 %, whereas the loading capacity (Y2) varied between 0.03 % and 3.89 %. The digestibility of CMC/CHS micro-PECs containing niacinamide was evaluated in vitro via a static gastrointestinal model. Empirical models (Zero Order, First Order, Higuchi and Korsemeyer-Peppas) were fitted to the niacinamide release kinetics data. The zero-order model exhibited the best fit across all points (gastric and enteric digestion), with low zero-order constants (K0) ~ 0.002-0.003, indicating a regular and subdued release rate in all cases. These results highlight the applicability of CMC/CHS micro-PECs as an efficient, novel oral delivery system, surpassing conventional approaches by offering a sustained release and high encapsulation efficiency, without needing any additional chemical crosslinking agent for their obtention.
Collapse
Affiliation(s)
- Danielle Cristine Mota Ferreira
- Equipe de Estudo de Materiais Alimentares (E(2)MA), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil.
| | - Carolina Serra Rodrigues
- Equipe de Estudo de Materiais Alimentares (E(2)MA), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil
| | - Jane Sélia Dos Reis Coimbra
- Laboratório de Operações Unitárias (LOP), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil
| | - Eduardo Basílio de Oliveira
- Equipe de Estudo de Materiais Alimentares (E(2)MA), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
3
|
Xiang A, Li Y, Hu T, Liu K. Synthesis and mechanism of Mg/Al layered double oxides-silica nanocomposites for sustainable multi-nutrient delivery in agricultural applications. J Control Release 2024; 376:816-828. [PMID: 39490536 DOI: 10.1016/j.jconrel.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Potassium (K), urea (N), phosphate (P), and selenite (Se) are widely used in modern agriculture for improvement of crop yield and quality. However, traditional fertilizer suffers from poor fertilizer utilization efficiency and noncontrollable slow-release behavior. To improve nutrient utilization, we developed a layered double oxides-silica (LDO@Si) based on calcined Mg/Al layered double hydroxide-silica nanocomposites (LDH@Si), for slow release of K, N, P, and Se to crops. In this study, SEM, XRD, FT-IR, XPS, BET, and TGA were employed to analyze the structure, morphology, and microstructures of the samples. Results show that LDH@Si successfully transforms into LDO@Si after calcination, where LDO is mainly connected to silica via M-O-Si bonds. Furthermore, after K, P, and Se loading, the LDH@Si structure was successfully restored, indicating that phosphate and selenite ions have been effectively embedded in the inner layer of LDH. K ions are firmly fixed to the material surface via M-O-K bonds. After urea introducing, the pore structure of the material was completely filled, and excess urea formed a urea layer on the surface of the material. LDO@Si can continuously release nutrients into water through diffusion and LDO@Si dissolution for up to 240 h. Compared with chemical fertilizers, LDO@Si based slow-release fertilizer (CRSF2) significantly improves plant fresh weight, dry weight and chlorophyll content, increasing them by 13.91 %-23.13 %, 18.20 %-34.40 % and 2.24 %-14.81 %, respectively. Furthermore, a modest increase in the levels of nutrients N, P, and K is observed, while the Se concentration in plants treated with CRSF2 demonstrates significant enhancements of 9.57 %, 72.49 %, and 50.97 % compared to control treatments. These results illustrate the potential agricultural application of LDO@Si as a slow-release fertilizer for improving crop yields while minimizing the required amount of fertilizer.
Collapse
Affiliation(s)
- Aihua Xiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Yifan Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Tuanliu Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Kun Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Parfenyuk EV, Dolinina ES, Kraev AS. Synthesis and study of organo-modified silica based hydrogels: Rheological properties and drug release kinetics. J Biomed Mater Res B Appl Biomater 2024; 112:e35418. [PMID: 38786546 DOI: 10.1002/jbm.b.35418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/20/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
The method of synthesis of unmodified and organo-modified silica hydrogels and their composites with orotic acid as a model drug was developed. The hydrogels had a pH of 6.5-7.8. The particulate nature and highly porous structures of the hydrogel materials were revealed using scanning electron and optical microscopy methods. The content of aqueous phase in the hydrogels was 99% or more. In order to evaluate the possibility of their application as a basis for development of novel soft drug formulations and cosmetic compositions, rheological properties of the hydrogels and in vitro release kinetics of the drug were studied. The effects of synthesis conditions (increasing concentration of catalyst of silica sol formation, drug loading) and the silica matrix modification with various organic groups on the indicated properties were investigated. It was found that all synthesized hydrogels exhibited pseudoplasticity, thixotropy and controlled release of the drug, which are important for their potential application. However, in general, the indicated effects led to worsening the properties of the hydrogel materials in comparison with the unmodified silica hydrogels.
Collapse
Affiliation(s)
- Elena V Parfenyuk
- Research Department 3, G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Ivanovo, Russia
| | - Ekaterina S Dolinina
- Research Department 3, G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Ivanovo, Russia
| | - Anton S Kraev
- Research Department 3, G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
5
|
Balanč B, Salević-Jelić A, Đorđević V, Bugarski B, Nedović V, Petrović P, Knežević-Jugović Z. The Application of Protein Concentrate Obtained from Green Leaf Biomass in Structuring Nanofibers for Delivery of Vitamin B12. Foods 2024; 13:1576. [PMID: 38790876 PMCID: PMC11121456 DOI: 10.3390/foods13101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Nanofibers made of natural proteins have caught the increasing attention of food scientists because of their edibility, renewability, and possibility for various applications. The objective of this study was to prepare nanofibers based on pumpkin leaf protein concentrate (LPC) as a by-product from some crops and gelatin as carriers for vitamin B12 using the electrospinning technique. The starting mixtures were analyzed in terms of viscosity, density, surface tension, and electrical conductivity. Scanning electron micrographs of the obtained nanofibers showed a slight increase in fiber average diameter with the addition of LPC and vitamin B12 (~81 nm to 109 nm). Fourier transform infrared spectroscopy verified the physical blending of gelatin and LPC without phase separation. Thermal analysis showed the fibers had good thermal stability up to 220 °C, highlighting their potential for food applications, regardless of the thermal processing. Additionally, the newly developed fibers have good storage stability, as detected by low water activity values ranging from 0.336 to 0.376. Finally, the release study illustrates the promising sustained release of vitamin B12 from gelatin-LPC nanofibers, mainly governed by the Fickian diffusion mechanism. The obtained results implied the potential of these nanofibers in the development of functional food products with improved nutritional profiles.
Collapse
Affiliation(s)
- Bojana Balanč
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Ana Salević-Jelić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Verica Đorđević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Predrag Petrović
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Zorica Knežević-Jugović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| |
Collapse
|
6
|
Iqbal A, Javaid MA, Hussain MT, Raza ZA. Development of lactic acid based chain extender and soybean oil-derived polyurethanes for ecofriendly sustained drug delivery systems. Int J Biol Macromol 2024; 265:130717. [PMID: 38479673 DOI: 10.1016/j.ijbiomac.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the present study, a range of sustainable, biocompatible and biodegradable polyurethanes (PU-1 to PU-4) were synthesized using different combinations of biobased polyol (obtained through the epoxidation of soybean oil, followed by ring opening with ethanol) and polyethylene glycol (PEG) and isophorone diisocyanate. The sustainable chain extender used in this study was synthesized by the esterification of lactic acid with ethylene glycol (EG). The synthesized PU samples were characterized through scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Wetting ability and thermal degradation analysis (TGA) of the samples were also studied. Subsequently, these PUs were examined as potential drug delivery systems using Gabapentin as a model drug, which was loaded in the polymer matrix using the solvent evaporation method. The drug release studies were carried out in 0.06 N HCl as a release medium according to the method outlined in the United States Pharmacopeia. The maximum drug release was observed for sample PU-P1, which was found to be 53.0 % after 6 h. Moreover, a comparison of different PU samples revealed a trend wherein the values of drug release were decreased with an increase in the PEG content.
Collapse
Affiliation(s)
- Amer Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan.
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| |
Collapse
|
7
|
Valdes O, Bustos D, Guzmán L, Muñoz-Vera M, Urra G, Castro RI, Morales-Quintana L. The Controlled Release of Abscisic Acid (ABA) Utilizing Alginate-Chitosan Gel Blends: A Synergistic Approach for an Enhanced Small-Molecule Delivery Controller. Gels 2024; 10:185. [PMID: 38534603 DOI: 10.3390/gels10030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The integration of abscisic acid (ABA) into a chitosan-alginate gel blend unveils crucial insights into the formation and stability of these two substances. ABA, a key phytohormone in plant growth and stress responses, is strategically targeted for controlled release within these complexes. This study investigates the design and characterization of this novel controlled-release system, showcasing the potential of alginate-chitosan gel blends in ABA delivery. Computational methods, including molecular dynamics simulations, are employed to analyze the structural effects of microencapsulation, offering valuable insights into complex behavior under varying conditions. This paper focuses on the controlled release of ABA from these complexes, highlighting its strategic importance in drug delivery systems and beyond. This controlled release enables targeted and regulated ABA delivery, with far-reaching implications for pharmaceuticals, agriculture, and plant stress response studies. While acknowledging context dependency, the paper suggests that the liberation or controlled release of ABA holds promise in applications, urging further research and experimentation to validate its utility across diverse fields. Overall, this work significantly contributes to understanding the characteristics and potential applications of chitosan-alginate complexes, marking a noteworthy advancement in the field of controlled-release systems.
Collapse
Affiliation(s)
- Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca 3460000, Chile
| | - Marcelo Muñoz-Vera
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile
| | - Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile
| |
Collapse
|
8
|
Song W, Muhammad S, Dang S, Ou X, Fang X, Zhang Y, Huang L, Guo B, Du X. The state-of-art polyurethane nanoparticles for drug delivery applications. Front Chem 2024; 12:1378324. [PMID: 38476653 PMCID: PMC10929011 DOI: 10.3389/fchem.2024.1378324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.
Collapse
Affiliation(s)
- Wencong Song
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shanxing Dang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingyan Ou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingzi Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Lihe Huang
- Center for Educational Technology, Yulin Normal University, Yulin, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - XueLian Du
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Kariminia S, Shamsipur M, Barati A. Fluorescent folic acid-chitosan/carbon dot for pH-responsive drug delivery and bioimaging. Int J Biol Macromol 2024; 254:127728. [PMID: 38287587 DOI: 10.1016/j.ijbiomac.2023.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Nowadays, one of the most important reasons of death in the world is cancer. With the development of nanotechnology, advanced methods for treatment of cancer have introduced. In this work, the fluorescent carbon dots (CDs) were prepared from chitosan as the second abundant polysaccharide present in the nature. The surface of CDs was modified with chitosan (CDs/CS) and then the amino groups of chitosan were conjugated with activated folic acid (CDs/CS-FA) for controlled delivery of doxorubicin (DOX) as anticancer drug against HeLa cancer cells. The DOX loading efficiency of fluorescent CDs/CS-FA was high and nearly 60 %. Due to pH sensitive swelling/deswelling of CS, the percentage of cumulative DOX release could reach 90 % at cancer tissue (pH of 5.0) and 52 % at normal tissue (pH of 7.4) within 30 h. The cytotoxicity study revealed that the synthesized CDs were highly compatible on HeLa cells with cell viability 97-88 %. Cellular imaging shows that the entry of CDs/CS-FA to HeLa cells causes a green fluorescence, while the CDs/CS without FA have a negligible fluorescence. These results are due to the important role of FA in cell internalization. Thus, the CDs/CS-FA nanocarrier is suitable candidate for controlled pH sensitive drug delivery and cellular imaging.
Collapse
Affiliation(s)
| | | | - Ali Barati
- Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
10
|
Strankowska J, Grzywińska M, Łęgowska E, Józefowicz M, Strankowski M. Transport Mechanism of Paracetamol (Acetaminophen) in Polyurethane Nanocomposite Hydrogel Patches-Cloisite ® 30B Influence on the Drug Release and Swelling Processes. MATERIALS (BASEL, SWITZERLAND) 2023; 17:40. [PMID: 38203894 PMCID: PMC10779657 DOI: 10.3390/ma17010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
This article describes the swelling and release mechanisms of paracetamol in polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite). The transport mechanism, swelling and release processes of the active substance in nanocomposite matrix were studied using gravimetric and UV-Vis spectroscopic methods. Swelling and release processes depend on the amount of clay nanoparticles in these systems and the degree of crosslinking of PU/PEG/Cloisite® 30B hydrogel nanocomposites. The presence of clay causes, on the one hand, a reduction in free volumes in the polymer matrices, making the swelling process less effective; on the other hand, the high swelling and self-aggregation behavior of Cloisite® 30B and the interactions of paracetamol both with it and with the matrix, cause a change in the transport mechanism from anomalous diffusion to Fickian-like diffusion. A more insightful interpretation of the swelling and release profiles of the active substance was proposed, taking into account the "double swelling" process, barrier effect, and aggregation of clay. It was also proven that in the case of modification of polymer matrices with nanoparticles, the appropriate selection of their concentration is crucial, due to the potential possibility of controlling the swelling and release processes in drug delivery patches.
Collapse
Affiliation(s)
- Justyna Strankowska
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| | - Małgorzata Grzywińska
- Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland
| | - Ewelina Łęgowska
- Academia Copernicana Interdisciplinary Doctoral School, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Marek Józefowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| | - Michał Strankowski
- Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
11
|
Hoti G, Ferrero R, Caldera F, Trotta F, Corno M, Pantaleone S, Desoky MMH, Brunella V. A Comparison between the Molecularly Imprinted and Non-Molecularly Imprinted Cyclodextrin-Based Nanosponges for the Transdermal Delivery of Melatonin. Polymers (Basel) 2023; 15:polym15061543. [PMID: 36987322 PMCID: PMC10057034 DOI: 10.3390/polym15061543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Melatonin is a neurohormone that ameliorates many health conditions when it is administered as a drug, but its drawbacks are its oral and intravenous fast release. To overcome the limitations associated with melatonin release, cyclodextrin-based nanosponges (CD-based NSs) can be used. Under their attractive properties, CD-based NSs are well-known to provide the sustained release of the drug. Green cyclodextrin (CD)-based molecularly imprinted nanosponges (MIP-NSs) are successfully synthesized by reacting β-Cyclodextrin (β-CD) or Methyl-β Cyclodextrin (M-βCD) with citric acid as a cross-linking agent at a 1:8 molar ratio, and melatonin is introduced as a template molecule. In addition, CD-based non-molecularly imprinted nanosponges (NIP-NSs) are synthesized following the same procedure as MIP-NSs without the presence of melatonin. The resulting polymers are characterized by CHNS-O Elemental, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TGA), Differential Scanning Calorimetry (DSC), Zeta Potential, and High-Performance Liquid Chromatography (HPLC-UV) analyses, etc. The encapsulation efficiencies are 60-90% for MIP-NSs and 20-40% for NIP-NSs, whereas melatonin loading capacities are 1-1.5% for MIP-NSs and 4-7% for NIP-NSs. A better-controlled drug release performance (pH = 7.4) for 24 h is displayed by the in vitro release study of MIP-NSs (30-50% released melatonin) than NIP-NSs (50-70% released melatonin) due to the different associations within the polymeric structure. Furthermore, a computational study, through the static simulations in the gas phase at a Geometry Frequency Non-covalent interactions (GFN2 level), is performed to support the inclusion complex between βCD and melatonin with the automatic energy exploration performed by Conformer-Rotamer Ensemble Sampling Tool (CREST). A total of 58% of the CD/melatonin interactions are dominated by weak forces. CD-based MIP-NSs and CD-based NIP-NSs are mixed with cream formulations for enhancing and sustaining the melatonin delivery into the skin. The efficiency of cream formulations is determined by stability, spreadability, viscosity, and pH. This development of a new skin formulation, based on an imprinting approach, will be of the utmost importance in future research at improving skin permeation through transdermal delivery, associated with narrow therapeutic windows or low bioavailability of drugs with various health benefits.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Riccardo Ferrero
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marta Corno
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Stefano Pantaleone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Mohamed M H Desoky
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Valentina Brunella
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
12
|
Wang L, Zhan J, Ma R, Tian Y. Preparation of Starch-based Nanoemulsion for Sustained Release and Enhanced Bioaccessibility of Quercetin. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Lag Time in Diffusion-Controlled Release Formulations Containing a Drug-Free Outer Layer. Processes (Basel) 2022. [DOI: 10.3390/pr10122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Theoretical considerations along with extensive Monte Carlo simulations are used to calculate the lag time before the initiation of diffusion-controlled drug release in multilayer planar devices with an outer layer containing no drug. The presented results are also relevant in formulations coated by a drug-free membrane as well as in other reservoir systems. The diffusion of drug molecules through the outer layer towards the release medium is considered, giving rise to the observed lag time. We have determined the dependence of lag time on the thickness and the diffusion coefficient of the drug-free outer layer, as well as on the initial drug concentration and the surface area of the planar device. A simple expression, obtained through an analytical solution of diffusion equation, provides an approximate estimate for the lag time that describes the numerical results reasonably well; according to this relation, the lag time is proportional to the squared thickness of the outer layer over the corresponding diffusion coefficient and inversely proportional to the logarithm of the linear number density of the drug that is initially loaded in the inner layer.
Collapse
|
14
|
Dudu TE, Alpaslan D, Aktas N. Synthesis of controlled release hydrogels from dimethylacrylamide/maleic acid/starch and its application in lettuce cultivation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Huang J, Wu D, Xiong X. Preparation of a composite hydrogel of polyvinyl alcohol/chitosan fiber with anisotropic properties for sustained drug release. J Appl Polym Sci 2022. [DOI: 10.1002/app.53199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Huang
- Department of Materials Science and Engineering, College of Materials Xiamen University Xiamen China
| | - Danpin Wu
- Xiamen Yanjan New Material Co., Ltd. Xiamen China
| | - Xiaopeng Xiong
- Department of Materials Science and Engineering, College of Materials Xiamen University Xiamen China
| |
Collapse
|
16
|
Electrochemical Microneedles: Innovative Instruments in Health Care. BIOSENSORS 2022; 12:bios12100801. [PMID: 36290938 PMCID: PMC9599258 DOI: 10.3390/bios12100801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
As a significant part of drug therapy, the mode of drug transport has attracted worldwide attention. Efficient drug delivery methods not only markedly improve the drug absorption rate, but also reduce the risk of infection. Recently, microneedles have combined the advantages of subcutaneous injection administration and transdermal patch administration, which is not only painless, but also has high drug absorption efficiency. In addition, microneedle-based electrochemical sensors have unique capabilities for continuous health state monitoring, playing a crucial role in the real-time monitoring of various patient physiological indicators. Therefore, they are commonly applied in both laboratories and hospitals. There are a variety of reports regarding electrochemical microneedles; however, the comprehensive introduction of new electrochemical microneedles is still rare. Herein, significant work on electrochemical microneedles over the past two years is summarized, and the main challenges faced by electrochemical microneedles and future development directions are proposed.
Collapse
|
17
|
Durmus S, Ozay O. Synthesis and characterization of methacrylic acid based amphoteric hydrogels: use as a dual drug delivery system. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Secil Durmus
- School of Graduate Studies, Department of Bioengineering and Materials Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
18
|
Faverzani Magnago R, Carolina de Aguiar A, Fagundes Valezan I, Mendes de Moraes F, Luiza Ziulkoski A, Dal Pont Morisso F, Alberto Kanis L, Modolon Zepon K. Polycaprolactone triol-based polyurethane film conjugated ibuprofen to sustained release: synthesis, physicochemical, cytotoxic, and release studies. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abbasnezhad N, Zirak N, Champmartin S, Shirinbayan M, Bakir F. An Overview of In Vitro Drug Release Methods for Drug-Eluting Stents. Polymers (Basel) 2022; 14:2751. [PMID: 35808798 PMCID: PMC9269075 DOI: 10.3390/polym14132751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
The drug release profile of drug-eluting stents (DESs) is affected by a number of factors, including the formulation, design, and physicochemical properties of the utilized material. DES has been around for twenty years and despite its widespread clinical use, and efficacy in lowering the rate of target lesion restenosis, it still requires additional development to reduce side effects and provide long-term clinical stability. Unfortunately, for analyzing these implants, there is still no globally accepted in vitro test method. This is owing to the stent's complexity as well as the dynamic arterial compartments of the blood and vascular wall. The former is the source of numerous biological, chemical, and physical mechanisms that are more commonly observed in tissue, lumen, and DES. As a result, universalizing bio-relevant apparatus, suitable for liberation testing of such complex implants is difficult. This article aims to provide a comprehensive review of the methods used for in vitro release testing of DESs. Aspects related to the correlation of the release profiles in the cases of in vitro and in vivo are also addressed.
Collapse
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Nader Zirak
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Stéphane Champmartin
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
| | - Mohammadali Shirinbayan
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Farid Bakir
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
| |
Collapse
|
20
|
Eder S, Wiltschko L, Koutsamanis I, Alberto Afonso Urich J, Arbeiter F, Roblegg E, Spoerk M. Toward a new generation of vaginal pessaries via 3D-printing: concomitant mechanical support and drug delivery. Eur J Pharm Biopharm 2022; 174:77-89. [PMID: 35390451 DOI: 10.1016/j.ejpb.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
To improve patient adherence, vaginal pessaries - polymeric structures providing mechanical support to treat stress urinary incontinence (SUI) - greatly benefit from 3D-printing through customization of their mechanics, e.g. infill modifications. However, currently only limited polymers provide both flawless printability and controlled drug release. The current study closes this gap by exploring 3D-printing, more specifically fused filament fabrication, of pharmaceutical grade thermoplastic polyurethanes (TPU) of different hardness and hydrophilicity into complex pessary structures. Next to the pessary mechanics, drug incorporation into such a device was addressed for the first time. Mechanically, the soft hydrophobic TPU was the most promising candidate for pessary customization, as pessaries made thereof covered a broad range of the key mechanical parameter, while allowing self-insertion. From the drug release point of view, the hydrophobic TPUs were superior over the hydrophilic one, as the release levels of the model drug acyclovir were closer to the target value. Summarizing, the fabrication of TPU-based pessaries via 3D-printing is an innovative strategy to create a customized pessary combination product that simultaneously provides mechanical support and pharmacological therapy.
Collapse
Affiliation(s)
- Simone Eder
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| | - Laura Wiltschko
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | | | - Florian Arbeiter
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Universitätsplatz 1, 8010 Graz
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
21
|
Controlled Drug Release of Smart Magnetic Self-Assembled Micelle, Kinetics and Transport Mechanisms. J Pharm Sci 2022; 111:2378-2388. [DOI: 10.1016/j.xphs.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
|
22
|
Rubio Hernández-Sampelayo A, Navarro R, González-García DM, García-Fernández L, Ramírez-Jiménez RA, Aguilar MR, Marcos-Fernández Á. Biodegradable and Biocompatible Thermoplastic Poly(Ester-Urethane)s Based on Poly(ε-Caprolactone) and Novel 1,3-Propanediol Bis(4-Isocyanatobenzoate) Diisocyanate: Synthesis and Characterization. Polymers (Basel) 2022; 14:1288. [PMID: 35406162 PMCID: PMC9002640 DOI: 10.3390/polym14071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
A series of non-toxic biodegradable and biocompatible polyurethanes bearing p-aminobenzoate moieties are presented. The introduction of this attractive motif was carried out by the synthesis of a novel isocyanate. These biodegradable polymers were chemically and physically characterized by several techniques and methods including bioassay and water uptake measurements. The molecular weight of the soft segment (poly-ε-caprolactone, PCL) and hard segment crystallinity dictated the mechanical behavior and water uptake. The behavior of short PCL-based polyurethanes was elastomeric, whilst increasing the molecular weight of the soft segment led to plastic polyurethanes. Water uptake was hindered for long PCL due to the crystallization of the soft segment within the polyurethane matrix. Furthermore, two different types of chain extender, hydrolyzable and non-hydrolyzable, were also evaluated: polyurethanes based on hydrolyzable chain extenders reached higher molecular weights, thus leading to a better performance than their unhydrolyzable counterparts. The good cell adhesion and cytotoxicity results demonstrated the cell viability of human osteoblasts on the surfaces of these non-toxic biodegradable polyurethanes.
Collapse
Affiliation(s)
- Alejandra Rubio Hernández-Sampelayo
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Universidad Nacional de Educación a Distancia (UNED), Facultad de Ciencias, C/Bravo Murillo, 38, 28015 Madrid, Spain
| | - Rodrigo Navarro
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
| | - Dulce María González-García
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM-Zacatenco, Col Lindavista, Mexico City 07738, Mexico;
- Universidad de Guanajuato, Departamento de Química, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Luis García-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - Ángel Marcos-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
| |
Collapse
|
23
|
Wang M, Liang S, Gao W, Qin Y. The effect of promoting hydrogen bond aggregation based on PEMTC on the mechanical properties and shape memory function of polyurethane elastomers. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211393. [PMID: 35316953 PMCID: PMC8889183 DOI: 10.1098/rsos.211393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In this work, small molecule diols named PEMTC were synthesized from isophorone diisocyanate, N-(2-hydroxyethyl)acrylamide and trimethylolpropane by a semi-directional method. PEMTC (2-(prop-2-enamido)ethyl N-{3-[({[2-ethyl-3-hydroxy-2(hydroxymethyl)propoxy]carbonyl}amino)methyl]-3,5,5-trimethylcyclohexyl}carbamate) contains hydrogen bond active site and light-initiated C=C. We introduced it as a branch chain block into poly(ε-caprolactone) (PCL). By feeding and monitoring the reaction process, we synthesized a large number of polyurethane elastomers, hydrogen bonds PCL-based elastomer (HPE), which contain a large number of dynamic hydrogen bonds. Under UV irradiation, PEMTC can make HPE molecules aggregate and cross-link, improve the degree of internal hydrogen bonding interaction of HPE materials and endow HPE materials with good elasticity, toughness, heat resistance and shape memory ability. After 270 nm UV irradiation, the elongation at break of HPE materials decreased from 607.14-1463.95% to 426.60-610.36%, but the strength at break of HPE materials increased from 3.36-13.52 to 10.28-41.52 MPa, and the toughness increased from 16.36-129.71 to 40.48-172.22 MJ m-3. In addition, the highest shape fixation rate of HPE after UV irradiation was 98.0%, and the recovery rate was 93.7%.
Collapse
Affiliation(s)
- Muqun Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi, People's Republic of China
| | - Shaofeng Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi, People's Republic of China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi, People's Republic of China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530000, Guangxi, People's Republic of China
| | - Yuxuan Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi, People's Republic of China
| |
Collapse
|
24
|
Zirak N, Shirinbayan M, Benfriha K, Deligant M, Tcharkhtchi A. Stereolithography of (meth)acrylate‐based photocurable resin: Thermal and mechanical properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nader Zirak
- Arts Et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
- Arts Et Métiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| | - Mohammadali Shirinbayan
- Arts Et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
- Arts Et Métiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| | - Khaled Benfriha
- Arts Et Metiers Institute of Technology, CNAM, LCPI HESAM University Paris France
| | - Michael Deligant
- Arts Et Métiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| | - Abbas Tcharkhtchi
- Arts Et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
| |
Collapse
|
25
|
Zirak N, Shirinbayan M, Farzaneh S, Tcharkhtchi A. Effect of molecular weight on crystallization behavior of poly (lactic acid) under isotherm and non‐isotherm conditions. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nader Zirak
- Arts et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
| | | | | | - Abbas Tcharkhtchi
- Arts et Metiers Institute of Technology, CNRS, CNAM, PIMM HESAM University Paris France
| |
Collapse
|
26
|
Peng R, Zhang J, Du C, Li Q, Hu A, Liu C, Chen S, Shan Y, Yin W. Investigation of the Release Mechanism and Mould Resistance of Citral-Loaded Bamboo Strips. Polymers (Basel) 2021; 13:polym13193314. [PMID: 34641130 PMCID: PMC8512208 DOI: 10.3390/polym13193314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, the sustained-release system loading citral was synthesised by using PNIPAm nanohydrogel as a carrier and analysed its drug-release kinetics and mechanism. Four release models, namely zero-order, first-order, Higuchi, and Peppas, were employed to fit the experimental data, and the underlying action mechanism was analysed. The optimised system was applied to treat a bamboo mould, followed by assessment of the mould-proof performance. Our experimental results revealed that the release kinetics equation of the system conformed to the first order; the higher the external temperature, the better the match was. In the release process, PNIPAm demonstrated a good protection and sustained-release effect on citral. Under the pressure of 0.5 MPa, immersion time of 120 min, and the system concentration ratio of 1, the optimal drug-loading parameters were obtained using the slow-release system with the best release parameters. Compared to the other conditions, bamboos treated with pressure impregnation demonstrated a better control effect on bamboo mould, while the control effect on Penicillium citrinum, Trichoderma viride, Aspergillus niger, and mixed mould was 100% after 28 days. Moreover, the structure and colour of bamboo remained unchanged during the entire process of mould control.
Collapse
|
27
|
Abbasnezhad N, Shirinbayan M, Chabi F, Champmartin S, Tcharkhtchi A, Bakir F. Viscoelastic Behavior of Drug-Loaded Polyurethane. Polymers (Basel) 2021; 13:2608. [PMID: 34451148 PMCID: PMC8400544 DOI: 10.3390/polym13162608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Drug-eluting stents are desirable platforms for local medicine delivery. However, the incorporation of drugs into polymers can influence the mechanical and physicochemical properties of said matrix, which is a topic that is still poorly understood. In fact, this is more noticeable since the apposition is most often accompanied by mechanical stresses on the polymer coating, which can induce therapeutic failure that can result in death. It is therefore necessary to better understand their behavior by examining their properties in conditions such as those in living beings. We studied polyurethane drug carriers made in-house. Diclofenac epolamine was chosen as a model hydrophilic medicine. We used thermal measurements (DMTA) and tensile tests. The aim was to establish the influence of the loading and release of the drug on the physicochemical properties of this polymer in the presence of a stagnant or circulating fluid medium, phosphate-buffered saline (PBS). For the two PU/drug loadings studied, the effect of the initial drug load was more marked. The free volume fraction and the number of pores in the samples increased with the increasing percent of the drug and with release time. The kinetic profiles were accelerated with the loading ratio and with the presence of flow. Young's modulus and ultimate stress were not significantly influenced by the release time. A relevant relationship between the tensile properties and the viscoelastic behavior of the samples was developed. Our results have implications for optimizing the performance of drug coatings for stents.
Collapse
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France
| | - Mohammadali Shirinbayan
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France
| | - Fatiha Chabi
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France
| | - Stephane Champmartin
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France
| | - Abbas Tcharkhtchi
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France
| | - Farid Bakir
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France
| |
Collapse
|
28
|
Song J, Kouidri S, Bakir F. Review on the numerical investigations of mass transfer from drug eluting stent. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
da Silva CNS, Di-Medeiros MCB, Lião LM, Fernandes KF, Batista KDA. Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2115. [PMID: 33922015 PMCID: PMC8122507 DOI: 10.3390/ma14092115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.
Collapse
Affiliation(s)
- Cassio Nazareno Silva da Silva
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
| | | | - Luciano Morais Lião
- Laboratório de Ressonância Nuclear Magnética, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil;
| | - Kátia Flávia Fernandes
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
| | - Karla de Aleluia Batista
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia 74270-040, GO, Brazil
| |
Collapse
|
30
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
31
|
Abbasnezhad N, Kebdani M, Shirinbayan M, Champmartin S, Tcharkhtchi A, Kouidri S, Bakir F. Development of a Model Based on Physical Mechanisms for the Explanation of Drug Release: Application to Diclofenac Release from Polyurethane Films. Polymers (Basel) 2021; 13:1230. [PMID: 33920267 PMCID: PMC8069626 DOI: 10.3390/polym13081230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we present a method for prediction of the drug-release profile based on the physical mechanisms that can intervene in drug release from a drug-carrier. The application presented here incorporates the effects of drug concentration and Reynolds number defining the circulating flow in the testing vein. The experimental data used relate to the release of diclofenac from samples of non-degradable polyurethane subjected to static and continuous flow. This case includes simultaneously three mechanisms: burst-release, diffusion and osmotic pressure, identified beforehand here as being able to contribute to the drug liberation. For this purpose, authors coded the Sequential Quadratic Programming Algorithm to solve the problem of non-linear optimization. The experimental data used to develop the mathematical model obtained from release studies carried out in water solution at 37 °C, for three concentrations of diclofenac and two water flow rates. We discuss the contribution of mechanisms and kinetics by considering two aforementioned parameters and, following that, we obtain the specific-model and compare the calculated results with the experimental results for the reserved cases. The results showed that drug percentage mostly affect the burst release, however flow rate has affected the osmotic release. In addition, release kinetics of all the mechanisms have increased by increasing the values of two considered parameters.
Collapse
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Mohamed Kebdani
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| | - Mohammadali Shirinbayan
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Stéphane Champmartin
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| | - Abbas Tcharkhtchi
- Arts et Metiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Smaine Kouidri
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| | - Farid Bakir
- Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (M.K.); (M.S.); (S.C.); (S.K.); (F.B.)
| |
Collapse
|