1
|
Sohrabi M, Rabiee S. Electret Production and Applications with Special Regard to Health Physics Dosimetry: A Review. HEALTH PHYSICS 2025; 128:320-331. [PMID: 39601676 DOI: 10.1097/hp.0000000000001896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
ABSTRACT An electret detector is a piece of dielectric material film charged or polarized by a specific charging method to induce a quasi-permanent electric field. Electret films perform unique characteristics for production and applications in many areas of science and technology, especially in health physics dosimetry. A charged electret detector, when placed in an ionized environment, collects negative or positive ions depending on its original charging state, which reduces its original charge. The number of charges reduced in the ionized field is usually proportional to the absorbed radiation dose. In this paper, the state-of-the-art information on the type of electrets, production methods, some applications in particular in health physics dosimetry, and relevant concepts are reviewed.
Collapse
Affiliation(s)
- Mehdi Sohrabi
- Health Physics and Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Islamic Republic of Iran
| | | |
Collapse
|
2
|
Zhang Q, Gong J, He L, Peng H, Xiao H, Fang D, Lu X, Dang X, Deng S, Zeng Z. Ketonized Carbonitride Assembled Face Mask with Long-Term Light Triggered Antimicrobial Ability for Bioprotective Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53822-53832. [PMID: 39316712 DOI: 10.1021/acsami.4c11175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The worldwide transmission of infectious respiratory pathogens has caused innumerable deaths and suffering, while wearing a face mask is still the most effective way to terminate the respiratory infections spread. However, the frequent mask replacement as a result of the lack of pathogen sterilization ability not only increases the cross-contamination risk but also, even worse, produces a large amount of medical waste. In this work, we report on a ketonized carbonitride functionalized bioprotective face mask with pathogen sterilization activity that can effectively produce biocidal singlet oxygen triggered by light irradiation. Ketonized carbonitride loading on the outer layer of the mask is found to be capable of generating singlet oxygen, enabling the mask with antibacterial ability. Thanks to its high pathogen inactivation activity, the as-prepared mask exhibits long-term light triggered health protection performance, which, in return, reduces medical waste production as a result of the decreased mask replacement frequency. The synthesis of a fascinating bioprotective mask provides a new viewpoint into the development of personal bioprotective devices for health protection.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Junran Gong
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Liangjie He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Dexin Fang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Xiaohui Lu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Xueming Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Zhenxing Zeng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| |
Collapse
|
3
|
Singh S, Weber SAL, Mallick D, Goswami A. Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16330-16337. [PMID: 39054764 DOI: 10.1021/acs.langmuir.4c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and retention capabilities. Despite many efforts, comprehensive investigation of the charge distribution, retention, and discharge studies conducted on the CYTOP film at the micro-scale remains elusive. Here, we present direct quantification and mapping of surface charge on the CYTOP surface at room temperature using two different modes of advanced surface probe microscopy i.e., Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). We estimated that the surface charge densities of the CYTOP film using EFM are 1.4 and 3.3 μC/cm2 for the injection of positive and negative charges, respectively. Furthermore, we determined the charge retention time for both injected positive and negative charges. We found that the retention capacity of the negative charges on the CYTOP film is much higher as compared to the positive charges. Moreover, it is also observed that injected negative charges are strongly localized on the CYTOP surface compared to the positive counterpart. Additionally, we demonstrated that charge writing is possible on the CYTOP surface using the AFM conductive tip. These results may find potential applications in energy harvesting, sensing, memory devices, security, and surveillance.
Collapse
Affiliation(s)
- Shalini Singh
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Stefan A L Weber
- Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dhiman Mallick
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Interdisciplinary Microsystems Laboratory (IML), Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ankur Goswami
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Advanced Electronic Materials and Systems (AEMS) Laboratory, Department of Material Science Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Gong Y, Zhang K, Lei IM, Wang Y, Zhong J. Advances in Piezoelectret Materials-Based Bidirectional Haptic Communication Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405308. [PMID: 38895922 DOI: 10.1002/adma.202405308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Bidirectional haptic communication devices accelerate the revolution of virtual/augmented reality and flexible/wearable electronics. As an emerging kind of flexible piezoelectric materials, piezoelectret materials can effortlessly convert mechanical force into electrical signals and respond to electrical fields in a deformation manner, exhibiting enormous potential in the construction of bidirectional haptic communication devices. Existing reviews on piezoelectret materials primarily focus on flexible energy harvesters and sensors, and the recent development of piezoelectret-based bidirectional haptic communication devices has not been comprehensively reviewed. Herein, a comprehensive overview of the materials construction, along with the recent advances in bidirectional haptic communication devices, is provided. First, the development timeline, key characteristics, and various fabrication methods of piezoelectret materials are introduced. Subsequently, following the underlying mechanisms of bidirectional electromechanical signal conversion of piezoelectret, strategies to improve the d33 coefficients of materials are proposed. The principles of haptic perception and feedback are also highlighted, and representative works and progress in this area are summarized. Finally, the challenges and opportunities associated with improving the overall practicability of piezoelectret materials-based bidirectional haptic communication devices are discussed.
Collapse
Affiliation(s)
- Yanting Gong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| | - Iek Man Lei
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
5
|
Li J, Xie Y, Liu G, Bahatibieke A, Zhao J, Kang J, Sha J, Zhao F, Zheng Y. Bioelectret Materials and Their Bioelectric Effects for Tissue Repair: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38852-38879. [PMID: 39041365 DOI: 10.1021/acsami.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Biophysical and clinical medical studies have confirmed that biological tissue lesions and trauma are related to the damage of an intrinsic electret (i.e., endogenous electric field), such as wound healing, embryonic development, the occurrence of various diseases, immune regulation, tissue regeneration, and cancer metastasis. As exogenous electrical signals, such as conductivity, piezoelectricity, ferroelectricity, and pyroelectricity, bioelectroactives can regulate the endogenous electric field, thus controlling the function of cells and promoting the repair and regeneration of tissues. Materials, once polarized, can harness their inherent polarized static electric fields to generate an electric field through direct stimulation or indirect interactions facilitated by physical signals, such as friction, ultrasound, or mechanical stimulation. The interaction with the biological microenvironment allows for the regulation and compensation of polarized electric signals in damaged tissue microenvironments, leading to tissue regeneration and repair. The technique shows great promise for applications in the field of tissue regeneration. In this paper, the generation and change of the endogenous electric field and the regulation of exogenous electroactive substances are expounded, and the latest research progress of the electret and its biological effects in the field of tissue repair include bone repair, nerve repair, drug penetration promotion, wound healing, etc. Finally, the opportunities and challenges of electret materials in tissue repair were summarized. Exploring the research and development of new polarized materials and the mechanism of regulating endogenous electric field changes may provide new insights and innovative methods for tissue repair and disease treatment in biological applications.
Collapse
Affiliation(s)
- Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jia Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Sha
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feilong Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Endo T, Komine R, Hamada H, Nakamura T, Ishida R, Niguma S. Facile preparation and charge retention mechanism of polymer-based deformable electret. SOFT MATTER 2024; 20:5800-5809. [PMID: 38985289 DOI: 10.1039/d4sm00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Electret materials with high deformability largely extend their applications such as wearable devices and actuators. Meanwhile, the deformability of currently reported electrets is somewhat limited except for a liquid electret that requires synthetic procedures with relatively low product yield. Here, we report a polymer-based electret with infinite deformability, which is simply prepared by corona-discharging on the mixture of two commercially available polymers, i.e., polybutenes (PB) as a liquid polyolefin and polypropylene-graft-maleic anhydride (MPP) as a solute. The charge retention mechanism of the PB/MPP electret was both experimentally and computationally elucidated from the views of molecular and nanoscale structures, and transport properties. Contrary to the ease of the preparation, the charge retention mechanism was complicated. The results of quantum chemical calculations and X-ray scattering indicated that the succinic anhydride polar moieties in MPP act as a charge trap site while how they distribute in the non-polar matrix also matters. Transport property measurements revealed the strong connection between complex viscosity and the relaxation time of the charge decay of the PB/MPP electret. Finally, we fabricated a simple piezoelectric device consisting of the PB/MPP electret. It was demonstrated that the piezoelectric performance of the PB/MPP electret is comparable to that of a conventional solid electret.
Collapse
Affiliation(s)
- Takatsugu Endo
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Rikuo Komine
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroyuki Hamada
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Takumi Nakamura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Ryo Ishida
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Shun Niguma
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
7
|
Rabiee S, Sohrabi M, Afarideh H. Enhancing electrostatic charge stability of corona charged Teflon electret films for radiation dosimetry by optimizing metal electrode backing material. Appl Radiat Isot 2024; 205:111187. [PMID: 38245996 DOI: 10.1016/j.apradiso.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Metal electrode backing (MEB) material was found to have a significant role on the electrostatic surface charge stability of Teflon polytetrafluoroethylene (PTFE) electret films. PTFE films of different thicknesses were positively and negatively charged by using our home-made modified point-to-plane corona poling rotating systems. Different MEB materials and thicknesses; aluminum, copper, stainless steel, zinc, silver, and gold were applied. The electrostatic surface charge stability of charged PTFE films was monitored for 200 h at similar storage conditions. Proper MEB material enhances the electrostatic surface charge stability of electret films due to the work function of the metal electrodes and high potential barrier formation at the interface of MEB material and electret film. The studies show that thinner MEB materials provide higher electrostatic surface charge stability in PTFE films. Therefore, thinner MEB material with higher work function is an effective compromise for producing electret films with higher electrostatic surface charge stability. The findings are extremely important for the applications of highly stable electret films for different applications in particular for radiation dosimetry with special regards to radon monitoring.
Collapse
Affiliation(s)
- Sahel Rabiee
- Health Physics and Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Islamic Republic of Iran
| | - Mehdi Sohrabi
- Health Physics and Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Islamic Republic of Iran.
| | - Hossein Afarideh
- Health Physics and Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Islamic Republic of Iran
| |
Collapse
|
8
|
Yang MY, O’Mari O, Goddard WA, Vullev VI. How Permanent Are the Permanent Macrodipoles of Anthranilamide Bioinspired Molecular Electrets? J Am Chem Soc 2024; 146:5162-5172. [PMID: 38226894 PMCID: PMC10916682 DOI: 10.1021/jacs.3c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Dipoles are ubiquitous, and their impacts on materials and interfaces affect many aspects of daily life. Despite their importance, dipoles remain underutilized, often because of insufficient knowledge about the structures producing them. As electrostatic analogues of magnets, electrets possess ordered electric dipoles. Here, we characterize the structural dynamics of bioinspired electret oligomers based on anthranilamide motifs. We report dynamics simulations, employing a force field that allows dynamic polarization, in a variety of solvents. The results show a linear increase in macrodipoles with oligomer length that strongly depends on solvent polarity and hydrogen-bonding (HB) propensity, as well as on the anthranilamide side chains. An increase in solvent polarity increases the dipole moments of the electret structures while decreasing the dipole effects on the moieties outside the solvation cavities. The former is due to enhancement of the Onsager reaction field and the latter to screening of the dipole-generated fields. Solvent dynamics hugely contributes to the fluctuations and magnitude of the electret dipoles. HB with the solvent weakens electret macrodipoles without breaking the intramolecular HB that maintains their extended conformation. This study provides design principles for developing a new class of organic materials with controllable electronic properties. An animated version of the TOC graphic showing a sequence of the MD trajectories of short and long molecular electrets in three solvents with different polarities is available in the HTML version of this paper.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Omar O’Mari
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Valentine I. Vullev
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
- Department
of Chemistry, University of California, Riverside, California 92521, United States
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
- Materials
Science and Engineering Program, University
of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Hu L, Li X, Guo X, Xu M, Shi Y, Herve NB, Xiang R, Zhang Q. Electret Modulation Strategy to Enhance the Photosensitivity Performance of Two-Dimensional Molybdenum Sulfide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59704-59713. [PMID: 38087993 DOI: 10.1021/acsami.3c14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Due to the limited light absorption efficiency of atomic thickness layers and the existence of quenching effects, photodetectors solely made of transition metal dichalcogenides (TMDs) have exhibited an unsatisfactory detection performance. In this article, electret/TMD hybridized devices were proposed by vertically coupling a MoS2 channel and the PTFE film, which reveals an optimized photodetection behavior. Negative charges were generated in the PTFE layer through the corona charging method, akin to applying a negative bias on the MoS2 channel in lieu of a traditional voltage-driven back gate. Under a charging voltage of -6 kV, PTFE/MoS2 devices reveal improved photodetection performance (Rhybrid = 67.95A/W versus Ronly = 3.37 A/W, at 470 nm, 1.20 mW cm-2) and faster recovery speed (τd(hybrid) = 2000 ms versus τd(only) = 2900 ms) compared to those bare MoS2 counterparts. The optimal detection performance (2 orders of magnitude) was obtained when the charging voltage was -2 kV, limited by the minimum of the carrier density in MoS2 channels. This study provides an alternative strategy to optimize optoelectronic devices based on the 2D components through non-voltage-driven gating.
Collapse
Affiliation(s)
- Lian Hu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xinyu Guo
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Nduwarugira B Herve
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Rong Xiang
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
10
|
Dai N, Guan X, Lu C, Zhang K, Xu S, Lei IM, Li G, Zhong Q, Fang P, Zhong J. A Flexible Self-Powered Noncontact Sensor with an Ultrawide Sensing Range for Human-Machine Interactions in Harsh Environments. ACS NANO 2023; 17:24814-24825. [PMID: 38051212 DOI: 10.1021/acsnano.3c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Noncontact human-machine interactions (HMIs) provide a hygienic and intelligent approach to communicate between humans and machines. However, current noncontact HMIs are generally hampered by the interaction distance, and they lack the adaptability to environmental interference such as high humidity conditions. Here, we explore a self-powered electret-based noncontact sensor (ENS) with moisture-resisting ability and ultrawide sensing range exceeding 2.5 m. A megascopic air-bubble structure is designed to enhance charge-storage stability and charge-recovery ability of the ENS based on the heterocharge-synergy effect in electrets. Besides, multilayer electret films are introduced to strengthen the electric field by utilizing the electrostatic field superposition effect. Thanks to the above improved performances of the ENS, we demonstrate various noncontact HMI applications in harsh environments, including noncontact appliances, a moving trajectory and accidental fall tracking system, and a real-time machine learning-assisted gesture recognition system with accuracy as high as 99.21%. This research expands the way for noncontact sensor design and may further broaden applications in noncontact HMIs.
Collapse
Affiliation(s)
- Nian Dai
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau 999078, China
- CAS Key Laboratory of Human-Machine Intelligent-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Guan
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau 999078, China
| | - Chengyue Lu
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau 999078, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau 999078, China
| | - Sumei Xu
- School of Microelectronics, Shanghai University, Shanghai 201800, P. R. China
| | - Iek Man Lei
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau 999078, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligent-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qize Zhong
- School of Microelectronics, Shanghai University, Shanghai 201800, P. R. China
| | - Peng Fang
- CAS Key Laboratory of Human-Machine Intelligent-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
11
|
Song Z, Cai X, Wang Y, Yang W, Li W. Leveraging Ferroelectret Nanogenerators for Acoustic Applications. MICROMACHINES 2023; 14:2145. [PMID: 38138314 PMCID: PMC10744867 DOI: 10.3390/mi14122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Ferroelectret nanogenerator (FENG), renowned for its remarkable electromechanical conversion efficiency and low Young's modulus, has gained significant attention in various acoustic applications. The increasing interest is attributed to the crucial role acoustic devices play in our daily lives. This paper provides a comprehensive review of the advancements made in using FENG for acoustic applications. It elaborates on the operational mechanism of FENG in acoustics, with a special focus on comparing the influence of different fabrication materials and techniques on its properties. This review categorizes acoustic applications of FENG into three primary areas: acoustic sensing, acoustic actuation, and acoustic energy harvesting. The detailed descriptions of FENG's implementations in these areas are provided, and potential directions and challenges for further development are outlined. By demonstrating the wide range of potential applications for FENG, it is shown that FENG can be adapted to meet different individual needs.
Collapse
Affiliation(s)
- Ziling Song
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
| | - Xianfa Cai
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
| | - Yiqin Wang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
| | - Wenyu Yang
- School of Mechanical Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China;
| | - Wei Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
- Department of Mechanical Engineering, University of Vermont, 33 Colchester Ave., Burlington, VT 05405, USA
| |
Collapse
|
12
|
Perna G, Bonacci F, Caponi S, Clementi G, Di Michele A, Gammaitoni L, Mattarelli M, Neri I, Puglia D, Cottone F. 3D-Printed Piezoelectret Based on Foamed Polylactic Acid for Energy-Harvesting and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2953. [PMID: 37999307 PMCID: PMC10674440 DOI: 10.3390/nano13222953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Poly(lactic) acid (PLA) is a bio-compatible polymer widely used in additive manufacturing, and in the form of cellular foam it shows excellent mechanical and piezoelectric properties. This type of structure can be easily 3D-printed by Fusion Deposition Modelling (FDM) with commercially available composite filaments. In this work, we present mechanical and electrical investigations on 3D-printed low-cost and eco-friendly foamed PLA. The cellular microstructure and the foaming degree were tuned by varying extrusion temperature and flowrate. The maximum surface potential and charge stability of disk samples were found in correspondence of extrusion temperature between 230 and 240 °C with a flowrate of 53-44% when charging on a heated bed at 85 °C. The cells' morphology and correlated mechanical properties were analyzed and the measured piezoelectric d33 coefficient was found to be 212 pC/N. These findings show the importance of printing parameters and thermal treatment during the charging process in order to obtain the highest charge storage, stability and material flexibility. These results suggest that 3D-printed cellular PLA is a promising sustainable material for sensing and energy-harvesting applications.
Collapse
Affiliation(s)
- Gabriele Perna
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Francesco Bonacci
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Silvia Caponi
- Materials Foundry (IOM-CNR), National Research Council, c/o Department of Physics and Geology, Via A. Pascoli, 06123 Perugia, Italy;
| | - Giacomo Clementi
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Luca Gammaitoni
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Maurizio Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Igor Neri
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| | - Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy;
| | - Francesco Cottone
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (G.P.); (F.B.); (G.C.); (A.D.M.); (L.G.); (M.M.)
| |
Collapse
|
13
|
Li W, Cao Y, Wang C, Sepúlveda N. Ferroelectret nanogenerators for the development of bioengineering systems. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101388. [PMID: 37693856 PMCID: PMC10487350 DOI: 10.1016/j.xcrp.2023.101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bioengineering devices and systems will become a practical and versatile technology in society when sustainability issues, primarily pertaining to their efficiency, sustainability, and human-machine interaction, are fully addressed. It has become evident that technological paths should not rely on a single operation mechanism but instead on holistic methodologies that integrate different phenomena and approaches with complementary advantages. As an intriguing invention, the ferroelectret nanogenerator (FENG) has emerged with promising potential in various fields of bioengineering. Utilizing the changes in the engineered macro-scale electric dipoles to create displacement current (and vice versa), FENGs have been demonstrated to be a compelling strategy for bidirectional conversion of energy between the electrical and mechanical domains. Here we provide a comprehensive overview of the latest advancements in integrating FENGs in bioengineering systems, focusing on the applications with the most potential and the underlying current constraints.
Collapse
Affiliation(s)
- Wei Li
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yunqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chuan Wang
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nelson Sepúlveda
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Arnaboldi S. Wireless electrochemical actuation of soft materials towards chiral stimuli. Chem Commun (Camb) 2023; 59:2072-2080. [PMID: 36748650 PMCID: PMC9933456 DOI: 10.1039/d2cc06630k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Different areas of modern chemistry, require wireless systems able to transfer chirality from the molecular to the macroscopic event. The ability to recognize the enantiomers of a chiral analyte is highly desired, since in the majority of cases such molecules present different physico-chemical properties that could lead, eventually, to dangerous or harmful interactions with the environment or the human body. From an electrochemical point of view, enantiomers have the same electrochemical behavior except when they interact in a chiral environment. In this Feature Article, different approaches for the electrochemical recognition of chiral information based on the actuation of conducting polymers are described. Such a dynamic behavior of π-conjugated materials is based on an electrochemically induced shrinking/swelling transition of the polymeric matrix. Since all the systems, described so far in the literature, are achiral and require a direct connection to a power supply, new strategies will be presented in the manuscript, concerning the implementation of chirality in electrochemical actuators and their use in a wireless manner through bipolar electrochemistry. Herein, the synergy between the wireless unconventional actuation and the outstanding enantiorecognition of inherent chiral oligomers is presented as an easy and straightforward read out of chiral information in solution. This approach presents different advantages in comparison to classic electrochemical systems such as its wireless nature and the possible real-time data acquisition.
Collapse
Affiliation(s)
- Serena Arnaboldi
- Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133, Milano, Italy.
| |
Collapse
|
15
|
Zhang J, Chen G, Zhang K, Zhao D, Li Z, Zhong J. Washable and Breathable Electret Sensors Based on a Hydro-Charging Technique for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2449-2458. [PMID: 36583700 DOI: 10.1021/acsami.2c19224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible electromechanical sensors based on electret materials have shown great application potential in wearable electronics. However, achieving great breathability yet maintaining good washability is still a challenge for traditional electret sensors. Herein, we report a washable and breathable electret sensor based on a hydro-charging technique, namely, hydro-charged electret sensor (HCES). The melt-blown polypropylene (MBPP) electret fabric can be charged while washing with water. The surface potential of MBPP electret fabric can be improved by optimizing the type of water, water pressure, water temperature, drying temperature, drying time, ambient air pressure, and ambient relative humidity. It is proposed that the single fiber has charges of different polarities on the upper and lower surfaces due to contact electrification with water, thereby forming electric dipoles between fibers, which can lead to better surface potential stability than the traditional corona-charging method. The HCES can achieve a high air permeability of ∼215 mm/s and sensitivity up to ∼0.21 V/Pa, with output voltage remaining stable after over 36,000 working cycles and multiple times of water washing. As a demonstration example, the HCES is integrated into a chest strap to monitor human respiration conditions.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Laboratory of Electret & Its Application, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gangjin Chen
- Laboratory of Electret & Its Application, Hangzhou Dianzi University, Hangzhou 310018, China
- Hangzhou Dianzi University Information Engineering College, Hangzhou 311305, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Dazhe Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Zhaoyang Li
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| |
Collapse
|
16
|
Tan J, Chen K, Cheng J, Song Z, Zhang J, Zheng S, Xu Z, E S. A Stretchable Expanded Polytetrafluorethylene-Silicone Elastomer Composite Electret for Wearable Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:158. [PMID: 36616067 PMCID: PMC9823660 DOI: 10.3390/nano13010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Soaring developments in wearable electronics raise an urgent need for stretchable electrets. However, achieving soft electrets simultaneously possessing excellent stretchability, longevity, and high charge density is still challenging. Herein, a facile approach is proposed to prepare an all-polymer hybrid composite electret based on the coupling of elastomer and ePTFE membrane. The composite electrets are fabricated via a facile casting and thermal curing process. The obtained soft composite electrets exhibit constantly high surface potential (-0.38 kV) over a long time (30 days), large strain (450%), low hysteresis, and excellent durability (15,000 cycles). To demonstrate the applications, the stretchable electret is utilized to assemble a self-powered flexible sensor based on the electrostatic induction effect for the monitoring of human activities. Additionally, output signals in the pressure mode almost two orders of magnitude larger than those in the strain mode are observed and the sensing mechanism in each mode is investigated.
Collapse
Affiliation(s)
- Jianbo Tan
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Kaikai Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jinzhan Cheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaoqin Song
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Zhang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaodi Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
- Jinhua Intelligent Manufacturing Research Institute, Jinhua 321004, China
| | - Zisheng Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
- Jinhua Intelligent Manufacturing Research Institute, Jinhua 321004, China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
- Jinhua Intelligent Manufacturing Research Institute, Jinhua 321004, China
| |
Collapse
|
17
|
Feng Y, Rao Z, Song KY, Tang X, Zhou Z, Xiong Y. Understanding the Role of Soft X-ray in Charging Solid-Film and Cellular Electrets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4143. [PMID: 36500763 PMCID: PMC9736609 DOI: 10.3390/nano12234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Solid-film electrets and cellular electrets are defined as promising insulating dielectric materials containing permanent electrostatic and polarizations. High-performance charging methods are critical for electret transducers. Unlike dielectric barrier discharge (DBD) charging, the soft X-ray charging method, with its strong penetration ability, has been widely used in electrets after packaging and has even been embedded in high-aspect-ratio structures (HARSs). However, the related charging model and the charging effect of the soft X-ray irradiation remain unclear. In this study, the charge carrier migration theory and the one-dimensional electrostatic model were employed to build the soft X-ray charging models. The influence of soft X-ray irradiation under deferent poling voltages was investigated theoretically and experimentally. The conducted space charge measurement based on a pulsed electro-acoustic (PEA) system with a soft X-ray generator revealed that soft X-ray charging can offer higher surface charge densities and piezoelectricity to cellular electrets under the critical poling voltage lower than twice the breakdown voltage.
Collapse
Affiliation(s)
- Yue Feng
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zehong Rao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ki-Young Song
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xusong Tang
- Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
| | - Zilong Zhou
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Xiong
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France
| |
Collapse
|
18
|
Maksimkin AV, Dayyoub T, Telyshev DV, Gerasimenko AY. Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review. NANOMATERIALS 2022; 12:nano12132272. [PMID: 35808110 PMCID: PMC9268644 DOI: 10.3390/nano12132272] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Unlike traditional actuators, such as piezoelectric ceramic or metallic actuators, polymer actuators are currently attracting more interest in biomedicine due to their unique properties, such as light weight, easy processing, biodegradability, fast response, large active strains, and good mechanical properties. They can be actuated under external stimuli, such as chemical (pH changes), electric, humidity, light, temperature, and magnetic field. Electroactive polymers (EAPs), called ‘artificial muscles’, can be activated by an electric stimulus, and fixed into a temporary shape. Restoring their permanent shape after the release of an electrical field, electroactive polymer is considered the most attractive actuator type because of its high suitability for prosthetics and soft robotics applications. However, robust control, modeling non-linear behavior, and scalable fabrication are considered the most critical challenges for applying the soft robotic systems in real conditions. Researchers from around the world investigate the scientific and engineering foundations of polymer actuators, especially the principles of their work, for the purpose of a better control of their capability and durability. The activation method of actuators and the realization of required mechanical properties are the main restrictions on using actuators in real applications. The latest highlights, operating principles, perspectives, and challenges of electroactive materials (EAPs) such as dielectric EAPs, ferroelectric polymers, electrostrictive graft elastomers, liquid crystal elastomers, ionic gels, and ionic polymer–metal composites are reviewed in this article.
Collapse
Affiliation(s)
- Aleksey V. Maksimkin
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia; (D.V.T.); (A.Y.G.)
- Correspondence: (A.V.M.); (T.D.)
| | - Tarek Dayyoub
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia; (D.V.T.); (A.Y.G.)
- Correspondence: (A.V.M.); (T.D.)
| | - Dmitry V. Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia; (D.V.T.); (A.Y.G.)
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Alexander Yu. Gerasimenko
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia; (D.V.T.); (A.Y.G.)
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| |
Collapse
|
19
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|