1
|
Demmel Ferreira MM, Tambussi CP, Degrange FJ, Pestoni S, Tirao GA. The cranio-mandibular complex of the nightjar Systellura longirostris (Aves, Caprimulgiformes): functional relationship between osteology, myology and feeding. ZOOLOGY 2019; 132:6-16. [DOI: 10.1016/j.zool.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
|
2
|
Siebert T, Günther M, Blickhan R. A 3D-geometric model for the deformation of a transversally loaded muscle. J Theor Biol 2012; 298:116-21. [DOI: 10.1016/j.jtbi.2012.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/25/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022]
|
3
|
HUIJING PETERA. INTRA-, EXTRA- AND INTERMUSCULAR MYOFASCIAL FORCE TRANSMISION OF SYNERGISTS AND ANTAGONISTS: EFFECTS OF MUSCLE LENGTH AS WELL AS RELATIVE POSITION. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519402000496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concepts of intramuscular myofascial force transmission is reintroduced and reviewed on the basis of experiments involving tenotomy and aponeurotomy of dissected rat EDL muscle studied in situ. Results from experiments with measurements of force of EDL muscle, of which the muscle belly was not dissected (i.e. the muscle is surrounded by its natural connective tissue milieu) are discussed. In such experiments, force was measured at proximal as well as distal EDL tendons. Examples of experimental evidence for both extramuscular and intermuscular myofascial force transmission within the rat anterior crural compartment are presented. Evidence is presented also for differential effects of proximal and distal lengthening on myofascial force transmission from EDL, even for the case in which symmetric length changes were imposed on the muscle. It is shown that myofascial force transmission effects are not limited to synergists located within one compartment, but do also play a very substantial role in the interaction between antagonist muscles in neighbouring anterior crural and peroneal compartments.
Collapse
Affiliation(s)
- PETER A. HUIJING
- Instituut voor Fundamentele en Toegepaste Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands
- Integrated Biomedical Engineering for Restoration of Human Function, Instituut voor Biomedische Technologie, Department of Biomechanical Engineering, Universiteit Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Sandercock TG. Extra force from asynchronous stimulation of cat soleus muscle results from minimizing the stretch of the common elastic elements. J Neurophysiol 2006; 96:1401-5. [PMID: 16790590 DOI: 10.1152/jn.01304.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rack and Westbury showed that low-frequency asynchronous stimulation of a muscle produces greater force compared with synchronous stimulation. This study tested the hypothesis that the difference results from the dynamic stretch of the common elastic elements. In eight anesthetized cats, the soleus was attached to a servomechanism to control muscle length and record force. The ventral roots were divided into four bundles so each innervated approximately 1/4 of the soleus. The elasticity shared by each part of the muscle was estimated and the servomechanism programmed to compensate for its stretch. At each test frequency (5, 7.5, and 10 Hz), the muscle was stimulated by asynchronous stimulation, synchronous stimulation, summation of force with each part stimulated individually, and summation with each part stimulated individually and the servomechanism mimicking tendon stretch during asynchronous stimulation. Muscle length was isometric except for the last protocol. The observed differences were small. The greatest difference occurred during stimulation at 5 Hz with muscle length on the ascending limb of the length-tension curve. Here, the average forces, normalized by asynchronous force, were asynchronous, 100%; synchronous, 73%; summation, 110%; and summation with stretch compensation, 98%. The results support the hypothesis and suggest that the common elasticity can be used to predict force gains from asynchronous stimulation.
Collapse
Affiliation(s)
- Thomas G Sandercock
- Department of Physiology, Northwestern University School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
|
6
|
Sandercock TG. Nonlinear summation of force in cat tibialis anterior: a muscle with intrafascicularly terminating fibers. J Appl Physiol (1985) 2003; 94:1955-63. [PMID: 12524375 DOI: 10.1152/japplphysiol.00718.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complex connective tissue structure of muscle and tendon suggests that forces from two parts of a muscle may not summate linearly, particularly in muscles with intrafasciculary terminating fibers, such as cat tibialis anterior (TA). In four anesthetized cats, the TA was attached to a servomechanism to control muscle length and record force. The ventral roots were divided into two bundles, each innervating about half the TA, so the two parts could be stimulated alone or together. Nonlinear summation of force (F(nl)) was measured during isometric contractions. F(nl) was small and negative, indicating less than linear summation of the parts, which is consistent with the predicted F(nl) of muscle fibers connected in series. F(nl) was more significant when smaller parts of the muscle were tested (21.8 vs. 8% for whole muscle). These data were fit to a model where both parts of the muscle were assumed to stretch a common elasticity. Compensatory movements of the servomechanism showed the common elasticity is very stiff, and the model cannot account for F(nl) in cat TA.
Collapse
Affiliation(s)
- Thomas G Sandercock
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| |
Collapse
|
7
|
Huijing PA, Baan GC. Extramuscular myofascial force transmission within the rat anterior tibial compartment: proximo-distal differences in muscle force. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:297-311. [PMID: 11736692 DOI: 10.1046/j.1365-201x.2001.00911.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles (EHL) were excited simultaneously and maximally. Only EDL length was changed, exclusively by moving the position of its proximal tendon. Distal force exerted by TA + EHL complex was not affected significantly. Proximal and distal EDL isometric force were not equal for most EDL lengths: Fprox - Fdist ranged from 0 to approximately +22.7% of Fprox at higher lengths and from 0 to approximately -24.5% at the lowest lengths. It is concluded that extramuscular connections transmit force from muscle. Significant proximo-distal differences of EDL force remained after repeated measurements, regardless of length order, although their length dependence was altered. Measurements of both proximal and distal EDL force were highly reproducible, if EDL did not attain higher lengths than target length. After being active at high lengths, proximal and distal length-force curves were altered at low lengths but not for the highest length range. Extensor digitorum longus length-active force hysteresis was present for proximal as well as distal EDL measurements with increasing and decreasing isometric length order. Further isolating EDL removed the proximo-distal difference for active EDL force. However a decreased difference for passive EDL force remained, which was ascribed to remaining extramuscular connective tissue linkages. It is concluded that extramuscular myofascial force transmission is an important feature of muscle that is not isolated from its surrounding tissues.
Collapse
Affiliation(s)
- P A Huijing
- Instituute voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Abstract
Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge.
Collapse
Affiliation(s)
- R J Monti
- Department of Physiological Science, University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
9
|
|
10
|
Young M, Paul A, Rodda J, Duxson M, Sheard P. Examination of intrafascicular muscle fiber terminations: implications for tension delivery in series-fibered muscles. J Morphol 2000; 245:130-45. [PMID: 10906747 DOI: 10.1002/1097-4687(200008)245:2<130::aid-jmor4>3.0.co;2-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian skeletal muscles with long fascicle lengths are predominantly composed of short muscle fibers that terminate midbelly with no direct connection to the muscle origin or insertion. The manner in which these short fibers terminate and transmit tension through the muscle to their tendons is poorly understood. We made an extensive morphological study of a series-fibered muscle, the guinea pig sternomastoid, in order to define the full range of structural specializations for tension transmission from short fibers within this muscle. Terminations were examined in single fibers, teased small bundles of fibers, and in sections at both the light and electron microscopic level. In many cases, sites of fiber termination were defined by reactivity for the enzyme acetylcholinesterase, which also marks myotendinous junctions. Additionally, transport of the lipophilic fluorescent dye, DiI, or injection of Lucifer Yellow were used to visualize undisturbed fiber terminations in whole muscles using confocal and fluorescence microscopy. At the light microscopic level, we find that intrafascicularly terminating fibers end about equally often in either a long progressive taper, or in a series of small or larger blunt steps. Combinations of these two morphologies are also seen. However, when analyzed at higher resolution with confocal or electron microscopy, the apparently smooth progressive tapers appear also to be predominantly composed of a series of fine stepped terminations. Stepwise terminations in most cases join face-to-face with complementary endings of neighboring muscle fibers, some via an extended collagenous bridge and others at close interdigitating myomyonal junctions. These muscle-to-muscle junctions show many of the features of myotendinous junctions, including dense subsarcolemmal plaques in regions of myofibrillar termination and we suggest that they serve to pass tension from fiber to fiber along the longitudinal axis of the muscle. In addition, we observe regions of apparent side-to-side adhesion between neighboring fibers at sites where there is no apparent fiber tapering or structural specialization typical of myofibril termination. These sites show acetylcholinesterase reactivity, and large numbers of collagen fibers passing laterally from fiber to fiber. These latter connections seem most likely to be involved in lateral transmission of tension, either from fiber to fiber, or from fiber to endomysium. Overall, our results suggest that tension from intrafascicularly terminating fibers is likely to be passed along the muscle to the tendon using both in-series and in-parallel arrangements. The results are discussed in light of current theories of tension delivery within the series-fibered muscles typical of large, nonprimate mammals.
Collapse
Affiliation(s)
- M Young
- Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
11
|
Sokoloff A, Ryan J, Valerie E, Wilson D, Goslow G. Neuromuscular organization of avian flight muscle: Morphology and contractile properties of motor units in the pectoralis (pars thoracicus) of pigeon (Columba livia). J Morphol 1998; 236:179-208. [DOI: 10.1002/(sici)1097-4687(199806)236:3<179::aid-jmor3>3.0.co;2-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Eldred E, Yung L, Eldred D, Roy RR. Distribution of muscle spindles in a simply structured muscle: integrated total sensory representation. Anat Rec (Hoboken) 1998; 251:161-72. [PMID: 9624445 DOI: 10.1002/(sici)1097-0185(199806)251:2<161::aid-ar3>3.0.co;2-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The distribution of muscle spindles (Sps) in a small muscle of simple architecture, the capsularis at the cat's hip joint, was quantified to reveal the patterns of proprioceptive representation in the transverse and sagittal planes as well as to model the effect a local disturbance in muscle length would have on total Sp discharge. METHODS Locations in serial cross-sections of the 32 and 38 Sps in 2 muscles, 1 perfused with the hip joint flexed and the other extended, were plotted, and their patterns of integrated sensitivity calculated assuming that (1) the discharge rate of a Sp afferent varies linearly with change in length along the Sp's axis, and (2) that within a local disturbance produced by contraction of a motor unit (MU), lengths decrease either linearly or as the square of the distance from its center. RESULTS The isomeric pattern of "integrated, total Sp representation on cross-section" showed two peaks of sensitivity in the half of the muscle that had been next to the joint capsule, offset by low representation in a small, central area and along the extensive zone bordering the laterally facing "superficial surface." The equivalent radius of an idealized symmetrical MU territory was estimated from distributions of the few fast, oxidative-glycolytic fibers found in two muscles, and the effect of a MU's contraction on net Sp discharge predicted when the unit was positioned at distinctive sites within the pattern. As an index of Ia and II afferent representation in the sagittal plane, the distribution of the nucleated regions of Sps and the summed lengths of segments of Sp axial bundles and capsules, respectively, within successive 1-mm segments of the muscle were graphed. CONCLUSIONS The longitudinal representation and structure of the muscle are not suited for reflex adjustment of differences in length along the muscle. The isomeric pattern of high relief in the transverse plane suggests that in this approximately 0.2 g muscle, the localization of myotatic reflexes might be accommodated but the need for adjustment in activation of MUs seems minimal. This is because the muscle is not compartmentalized, its fibers extend between the muscle's origin and insertion, their angle of pinnation is low, and greater than 90% are of slow type. The distribution of Sps is consistent with gauging length of the entire muscle and hence angulation at the hip joint.
Collapse
Affiliation(s)
- E Eldred
- Department of Neurobiology, University of California at Los Angeles 91109, USA
| | | | | | | |
Collapse
|
13
|
Kwa SH, Korfage JA, Weijs WA. Function-dependent anatomical parameters of rabbit masseter motor units. J Dent Res 1995; 74:1649-57. [PMID: 7499587 DOI: 10.1177/00220345950740100501] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rabbit masseter motor units (22) were studied by stimulation of trigeminal motoneurons. We tested the hypotheses that masseter motor units facilitate fine motor control by concentrating fibers in small areas and that the distribution of motor unit fibers depends on the fiber type. The twitch contraction time and the isometric tetanic force were registered. The motor unit fibers were depleted of their glycogen by prolonged stimulation. Serial sections of the entire muscle were stained with the periodic acid Schiff (PAS) and monoclonal antibody stains. The muscle fibers of the motor unit were mapped and identified by four myosin heavy-chain (MHC) isoforms: I, IIA, IID, and cardiac-alpha. In the PAS-stained sections, anatomical parameters of the motor units, affecting the force output, were analyzed: the innervation ratio (IR), motor unit territory area (TA), and relative (R-DENS) and absolute (A-DENS) motor unit fiber densities. The fiber cross-sectional area (F-CSA) was measured for each MHC fiber type. The F-CSA sum of all motor unit fibers, the physiological cross-sectional area (P-CSA), was calculated. The IR ranged between 77 and 720 fibers (mean, 267). The mean TA was 8.71 mm2 (range, 4.45 to 19.58). The mean R-DENS was 10 fibers per 100; the A-DENS was 31 fibers per mm2. Linear correlations were found between the IR and the R-DENS and between the tetanic force and the IR. The F-CSAs showed a stepwise increase in value from type I- to IID-MHC fibers. The mean P-CSA was 0.90 mm2 (range, 0.09 to 2.97). A high linear correlation was noted between the P-CSA and the tetanic force. In conclusion, increase of motor unit size expressed in higher fiber counts and forces is accomplished by increase of the fiber density. Thus, forces can be exerted selectively in restricted regions of the masseter muscle. Differences in fiber orientation due to complex muscle pinnation emphasize the possibility of an accurate muscle performance.
Collapse
Affiliation(s)
- S H Kwa
- Department of Functional Anatomy, Academic Center for Dentistry, Amsterdam (ACTA), The Netherlands
| | | | | |
Collapse
|
14
|
Roy RR, Garfinkel A, Ounjian M, Payne J, Hirahara A, Hsu E, Edgerton VR. Three-dimensional structure of cat tibialis anterior motor units. Muscle Nerve 1995; 18:1187-95. [PMID: 7659113 DOI: 10.1002/mus.880181015] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The motor unit is the basic unit for force production in a muscle. However, the position and shape of the territory of a motor unit within the muscle have not been defined precisely. The territories of five motor units in the cat tibialis anterior muscle were reconstructed three-dimensionally (3-D) from tracings of the glycogen-depleted fibers belonging to each unit. The motor unit territories did not span the entire length of the muscle and their cross-sectional areas tapered along the proximodistal axis producing a conical shape. In addition, the position of the territory of each unit shifted in an anterior-posterior plane along the longitudinal axis of the muscle, presumably as a consequence of the pinnation of the fibers. The area of the motor unit territory at any given level along the proximodistal axis was highly correlated with the number of fibers within the territory at that level. Connective tissue boundaries (outlining fascicles) appeared to have a strong influence on the shape of the territory, territories showed abrupt changes at connective tissue boundaries as groups of motor unit fibers within a fascicle often terminated together while motor unit fibers in neighboring fascicles did not terminate. It is likely that the mechanical impact of the recruitment of a motor unit is affected by the location and shape of motor units within the same muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R R Roy
- Brain Research Institute, University of California, Los Angeles 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|