1
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Nagahara AI, Homma J, Ryu B, Sekine H, Higashi Y, Shimizu T, Kawamata T. Networked lymphatic endothelial cells in a transplanted cell sheet contribute to form functional lymphatic vessels. Sci Rep 2022; 12:21698. [PMID: 36522421 PMCID: PMC9755306 DOI: 10.1038/s41598-022-26041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
This study evaluated whether cell sheets containing a network of lymphatic endothelial cells (LECs) promoted lymphangiogenesis after transplantation in vivo. Cell sheets with a LEC network were constructed by co-culturing LECs and adipose-derived stem cells (ASCs) on temperature-responsive culture dishes. A cell ratio of 3:2 (vs. 1:4) generated networks with more branches and longer branch lengths. LEC-derived lymphatic vessels were observed 2 weeks after transplantation of a three-layered cell sheet construct onto rat gluteal muscle. Lymphatic vessel number, diameter and depth were greatest for a construct comprising two ASC sheets stacked on a LEC/ASC (3:2 ratio) sheet. Transplantation of this construct in a rat model of femoral lymphangiectomy led to the formation of functional lymphatic vessels containing both transplanted and host LECs. Further development of this technique may lead to a new method of promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Ayumi Inoue Nagahara
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Graduate School of Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Jun Homma
- grid.410818.40000 0001 0720 6587Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Bikei Ryu
- grid.488555.10000 0004 1771 2637Department of Neurosurgery, Tokyo Women’s Medical University Hospital, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Hidekazu Sekine
- grid.410818.40000 0001 0720 6587Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yuhei Higashi
- grid.410818.40000 0001 0720 6587Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan ,Tokaihit Co., Ltd., Shizuoka, Japan
| | - Tatsuya Shimizu
- grid.410818.40000 0001 0720 6587Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Takakazu Kawamata
- grid.488555.10000 0004 1771 2637Department of Neurosurgery, Tokyo Women’s Medical University Hospital, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| |
Collapse
|
3
|
Duman BO, Sariboyaci AE, Karaoz E. Bio-engineering of 3-D cell sheets for diabetic rats: Interaction between mesenchymal stem cells and beta cells in functional islet regeneration system. Tissue Cell 2022; 79:101919. [DOI: 10.1016/j.tice.2022.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022]
|
4
|
Asadi M, Khalili M, Lotfi H, Vaghefi Moghaddam S, Zarghami N, André H, Alizadeh E. Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sci 2021; 276:119373. [PMID: 33744324 DOI: 10.1016/j.lfs.2021.119373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Development of novel technologies provides the best tissue constructs engineering and maximizes their therapeutic effects in regenerative therapy, especially for liver dysfunctions. Among the currently investigated approaches of tissue engineering, scaffold-based and scaffold-free tissues are widely suggested for liver regeneration. Analogs of liver acellular extracellular matrix (ECM) are utilized in native scaffolds to increase the self-repair and healing ability of organs. Native ECM analog could improve liver repairing through providing the supportive framework for cells and signaling molecules, exerting normal biomechanical, biochemical, and physiological signal complexes. Recently, innovative cell sheet technology is introduced as an alternative for conventional tissue engineering with the advantage of fewer scaffold restrictions and cell culture on a Thermo-Responsive Polymer Surface. These sheets release the layered cells through a temperature-controlled procedure without enzymatic digestion, while preserving the cell-ECM contacts and adhesive molecules on cell-cell junctions. In addition, several novelties have been introduced into the cell sheet and decellularization technologies to aid cell growth, instruct differentiation/angiogenesis, and promote cell migration. In this review, recent trends, advancements, and issues linked to translation into clinical practice are dissected and compared regarding the decellularization and cell sheet technologies for liver tissue engineering.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282 Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Kobayashi J, Arisaka Y, Yui N, Yamato M, Okano T. Preservation of heparin-binding EGF-like growth factor activity on heparin-modified poly( N-isopropylacrylamide)-grafted surfaces. RSC Adv 2021; 11:37225-37232. [PMID: 35496401 PMCID: PMC9043771 DOI: 10.1039/d1ra07317f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
A heparin-modified poly(N-isopropylacrylamide) (PIPAAm)-grafted surface bound with heparin-binding epidermal growth factor-like growth factor (HB-EGF) was able to culture hepatocytes maintaining high albumin secretion and high expression of hepatocyte-specific genes. However, the activity of HB-EGF on the surface and its binding effects on hepatocytes remain unclear. In this study, we investigated the temperature-dependent interactions of HB-EGF and EGF receptor (EGFR) with heparin-modified PIPAAm to evaluate the activity of HB-EGF on the surface. Quartz crystal microbalance (QCM) measurements revealed that the amounts of adsorbed HB-EGF on either the heparin-modified PIPAAm-grafted surface (heparin-IC1) or PIPAAm-grafted surfaces were almost the same regardless of swelling/deswelling of grafted PIPAAm chains. The heparin-IC1 surface bound to HB-EGF at 37 °C had the ability to bind to hepatocytes through specific affinity interaction with EGFR, whose activation was confirmed by western blotting. However, the physisorbed HB-EGF on the PIPAAm surface greatly diminished its activity. Taken together, the introduction of heparin into grafted PIPAAm chains on the surface plays a pivotal role in holding HB-EGF while preserving its activity. Hydration and swelling of surface-grafted PIPAAm chains at 20 °C greatly diminished the attachment of hepatocytes with HB-EGF bound to heparin-IC1, whereas hepatocytes were able to bind to HB-EGF bound to heparin-IC1 at 37 °C. Thus, the equilibrated affinity interaction between EGFRs and surface-bound HB-EGF was considered to be attenuated by steric hindrance due to hydration and/or swelling of grafted PIPAAm chains. Activity of HB-EGF bound to a heparin-modified poly(N-isopropylacrylamide) (PIPAAm)-grafted surface was preserved through specific binding to heparin, whereas physisorbed HB-EGF on a PIPAAm-grafted surface greatly diminished its activity.![]()
Collapse
Affiliation(s)
- Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Cell Sheet Tissue Engineering Center, Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Antimicrobial Properties of Extracellular Matrix Scaffolds for Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9641456. [PMID: 31911931 PMCID: PMC6930736 DOI: 10.1155/2019/9641456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
The necessity to manufacture graft materials with superior biocompatibility capabilities and biodegradability characteristics for tissue regeneration has led to the production of extracellular matrix- (ECM-) based scaffolds. Among their advantages are better capacity to allow cell colonization, which enables its successful integration into the tissue surrounding the area to be repaired. In addition, it has been shown that some of these scaffolds have antimicrobial activity, preventing possible infections; therefore, it could be used as an alternative to control surgical infection and decrease the use of antimicrobial agents. The purpose of this review is to collect the existing information about antimicrobial activity of the ECM and their components.
Collapse
|
7
|
Tatsumi K, Okano T. Hepatocyte Transplantation: Cell Sheet Technology for Liver Cell Transplantation. CURRENT TRANSPLANTATION REPORTS 2017; 4:184-192. [PMID: 28932649 PMCID: PMC5577064 DOI: 10.1007/s40472-017-0156-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of Review We will review the recent developments of cell sheet technology as a feasible tissue engineering approach. Specifically, we will focus on the technological advancement for engineering functional liver tissue using cell sheet technology, and the associated therapeutic effect of cell sheets for liver diseases, highlighting hemophilia. Recent Findings Cell-based therapies using hepatocytes have recently been explored as a new therapeutic modality for patients with many forms of liver disease. We have developed a cell sheet technology, which allows cells to be harvested in a monolithic layer format. We have succeeded in fabricating functional liver tissues in mice by stacking the cell sheets composed of primary hepatocytes. As a curative measure for hemophilia, we have also succeeded in treating hemophilia mice by transplanting of cells sheets composed of genetically modified autologous cells. Summary Tissue engineering using cell sheet technology provides the opportunity to create new therapeutic options for patients with various types of liver diseases.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan.,Cell Sheet Tissue Engineering Center and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
8
|
Heparin/Collagen 3D Scaffold Accelerates Hepatocyte Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells. Tissue Eng Regen Med 2017; 14:443-452. [PMID: 30603500 DOI: 10.1007/s13770-017-0048-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Both mature and stem cell-derived hepatocytes lost their phenotype and functionality under conventional culture conditions. However, the 3D scaffolds containing the main extracellular matrix constitutions, such as heparin, may provide appropriate microenvironment for hepatocytes to be functional. The current study aimed to investigate the efficacy of the differentiation capability of hepatocytes derived from human Wharton's jelly mesenchymal stem cells (WJ-MSCs) in 3D heparinized scaffold. In this case, the human WJ-MSCs were cultured on the heparinized and non-heparinized 2D collagen gels or within 3D scaffolds in the presence of hepatogenic medium. Immunostaining was performed for anti-alpha fetoprotein, cytokeratin-18 and -19 antibodies. RT-PCR was performed for detection of hepatic nuclear factor-4 (HNF-4), albumin, cytokeratin-18 and -19, glucose-6-phosphatase (G6P), c-met and Cyp2B. The results indicated that hepatogenic media induced the cells to express early liver-specific markers including HNF4, albumin, cytokeratin-18 and 19 in all conditions. The cells cultured on both heparinized culture conditions expressed late liver-specific markers such as G6P and Cyp2B as well. Besides, the hepatocytes differentiated in 3D heparinized scaffolds stored more glycogen that indicated they were more functional. Non-heparinized 2D gel was the superior condition for cholangiocyte differentiation as indicated by higher levels of cytokeratin 19 expression. In conclusion, the heparinized 3D scaffolds provided a microenvironment to mimic Disse space. Therefore, 3D heparinized collagen scaffold can be suggested as a good vehicle for hepatocyte differentiation.
Collapse
|
9
|
Zhong C, Xie HY, Zhou L, Xu X, Zheng SS. Human hepatocytes loaded in 3D bioprinting generate mini-liver. Hepatobiliary Pancreat Dis Int 2016; 15:512-518. [PMID: 27733321 DOI: 10.1016/s1499-3872(16)60119-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. METHODS We fabricated 3D hydrogel scaffolds with a bioprinter. The biocompatibility of 3D hydrogel scaffolds was tested. Sixty nude mice were randomly divided into four groups, with 15 mice in each group: control, hydrogel, hydrogel with L02 (cell line HL-7702), and hydrogel with hepatocyte growth factor (HGF). Cells were cultured and deposited in scaffolds which were subsequently engrafted into livers after partial hepatectomy and radiation-induced liver damage (RILD). The engrafted tissues were examined after two weeks. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total bilirubin, CYP1A2, CYP2C9, glutathione S-transferase (a-GST), and UDP-glucuronosyl transferase (UGT-2) were compared among the groups. Hematoxylin-eosin (HE) staining and immunohistochemistry of cKit and cytokeratin 18 (CK18) of engrafted tissues were evaluated. The survival time of the mice was also compared among the four groups. RESULTS 3D hydrogel scaffolds did not impact the viability of cells. The levels of ALT, AST, albumin, total bilirubin, CYP1A2, CYP2C9, a-GST and UGT-2 were significantly improved in mice engrafted with 3D scaffold loaded with L02 compared with those in control and scaffold only (P<0.05). HE staining showed clear liver tissue and immunohistochemistry of cKit and CK18 were positive in the engrafted tissue. Mice treated with 3D scaffold+L02 cells had longer survival time compared with those in control and scaffold only (P<0.05). CONCLUSION 3D scaffold has the potential of recreating liver tissue and partial liver functions and can be used in the reconstruction of liver tissues.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | |
Collapse
|
10
|
Hanayama H, Ohashi K, Utoh R, Shimizu H, Ise K, Sakurai F, Mizuguchi H, Tsuchiya H, Okano T, Gotoh M. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors. CELL MEDICINE 2015; 8:31-8. [PMID: 26858906 DOI: 10.3727/215517915x689083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells.
Collapse
Affiliation(s)
- Hiroyuki Hanayama
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| | - Kazuo Ohashi
- † iPS Cell-based Projects on Cell Transplantation and Cell Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Rie Utoh
- ‡ Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku, Tokyo , Japan
| | - Hirofumi Shimizu
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| | - Kazuya Ise
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| | - Fuminori Sakurai
- § Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Hiroyuki Mizuguchi
- § Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Hiroyuki Tsuchiya
- † iPS Cell-based Projects on Cell Transplantation and Cell Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Teruo Okano
- ‡ Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku, Tokyo , Japan
| | - Mitsukazu Gotoh
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| |
Collapse
|
11
|
Yamashita S, Ohashi K, Utoh R, Okano T, Yamamoto M. Human Laminin Isotype Coating for Creating Islet Cell Sheets. CELL MEDICINE 2015; 8:39-46. [PMID: 26858907 DOI: 10.3727/215517915x689029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our experimental approach toward the development of new islet-based treatment for diabetes mellitus has been the creation of a monolayered islet cell construct (islet cell sheet), followed by its transplantation into a subcutaneous pocket. Previous studies describe rat laminin-5 (chain composition: α3, β3, γ2) as a suitable extracellular matrix (ECM) for surfaces comprised of a coated temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). To progress toward the clinical application of this approach, the present study attempted to identify an optimal human ECM as a coating material on PIPAAm surfaces, which allowed islet cells to attach on the surfaces and subsequently to be harvested as a monolithic cell sheet. Dispersed rat islet cells were seeded onto PIPAAm dishes coated with various human laminin isotypes: human laminin (HL)-211, HL-332, HL-411, HL-511, and HL-placenta. Plating efficiency at day 1, the confluency at day 3, and glucose-stimulated insulin secretion test at day 3 were performed. The highest value of plating efficiency was found in the HL-332-PIPAAm group (83.1 ± 0.7%). The HL-332-PIPAAm group also showed the highest cellular confluency (98.6 ± 0.5%). Islet cells cultured on the HL-332-PIPAAm surfaces showed a positive response in the glucose-stimulated insulin secretion test. By reducing culture temperature from 37°C to 20°C in the HL-332-PIPAAm group, cells were able to be harvested as a monolithic islet sheet. The present study showed that HL-332 was an optimal human-derived ECM on a PIPAAm coating for preparing islet cell sheets.
Collapse
Affiliation(s)
- Shingo Yamashita
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; †Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; †Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; ‡iPS Cell-based Projects on Cell Transplantation and Cell Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku-ku, Tokyo , Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku-ku, Tokyo , Japan
| | - Masakazu Yamamoto
- † Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University , Shinjuku-ku, Tokyo , Japan
| |
Collapse
|
12
|
Turner WS, Sandhu N, McCloskey KE. Tissue engineering: construction of a multicellular 3D scaffold for the delivery of layered cell sheets. J Vis Exp 2014:e51044. [PMID: 25350752 DOI: 10.3791/51044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many tissues, such as the adult human hearts, are unable to adequately regenerate after damage.(2,3) Strategies in tissue engineering propose innovations to assist the body in recovery and repair. For example, TE approaches may be able to attenuate heart remodeling after myocardial infarction (MI) and possibly increase total heart function to a near normal pre-MI level.(4) As with any functional tissue, successful regeneration of cardiac tissue involves the proper delivery of multiple cell types with environmental cues favoring integration and survival of the implanted cell/tissue graft. Engineered tissues should address multiple parameters including: soluble signals, cell-to-cell interactions, and matrix materials evaluated as delivery vehicles, their effects on cell survival, material strength, and facilitation of cell-to-tissue organization. Studies employing the direct injection of graft cells only ignore these essential elements.(2,5,6) A tissue design combining these ingredients has yet to be developed. Here, we present an example of integrated designs using layering of patterned cell sheets with two distinct types of biological-derived materials containing the target organ cell type and endothelial cells for enhancing new vessels formation in the "tissue". Although these studies focus on the generation of heart-like tissue, this tissue design can be applied to many organs other than heart with minimal design and material changes, and is meant to be an off-the-shelf product for regenerative therapies. The protocol contains five detailed steps. A temperature sensitive Poly(N-isopropylacrylamide) (pNIPAAM) is used to coat tissue culture dishes. Then, tissue specific cells are cultured on the surface of the coated plates/micropattern surfaces to form cell sheets with strong lateral adhesions. Thirdly, a base matrix is created for the tissue by combining porous matrix with neovascular permissive hydrogels and endothelial cells. Finally, the cell sheets are lifted from the pNIPAAM coated dishes and transferred to the base element, making the complete construct.
Collapse
Affiliation(s)
| | - Nabjot Sandhu
- School of Engineering, University of California, Merced
| | | |
Collapse
|