1
|
Richardson RR, Groenen M, Liu M, Mountford SJ, Briddon SJ, Holliday ND, Thompson PE. Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R. J Med Chem 2020; 63:5274-5286. [PMID: 32364733 DOI: 10.1021/acs.jmedchem.0c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclic dimeric peptide 1229U91 (GR231118) has an unusual structure and displays potent, insurmountable antagonism of the Y1 receptor. To probe the structural basis for this activity, we have prepared ring size variants and heterodimeric compounds, identifying the specific residues underpinning the mechanism of 1229U91 binding. The homodimeric structure was shown to be dispensible, with analogues lacking key pharmacophoric residues in one dimer arm retaining high antagonist affinity. Compounds 11d-h also showed enhanced Y1R selectivity over Y4R compared to 1229U91.
Collapse
Affiliation(s)
- Rachel R Richardson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Marleen Groenen
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Mengjie Liu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Nicholas D Holliday
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Kuhn K, Littmann T, Dukorn S, Tanaka M, Keller M, Ozawa T, Bernhardt G, Buschauer A. In Search of NPY Y 4R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d-Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS OMEGA 2017; 2:3616-3631. [PMID: 30023699 PMCID: PMC6044894 DOI: 10.1021/acsomega.7b00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The cross-linked pentapeptides (2R,7R)-diaminooctanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) ((2R,7R)-BVD-74D, (2R,7R)-1) and octanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) (2) as well as the pentapeptide Ac-Tyr-Arg-Leu-Arg-Tyr-amide (3) were previously described as neuropeptide Y Y4 receptor (Y4R) partial agonists. Here, we report on a series of analogues of (2R,7R)-1 and 2 in which Arg2, Leu3, or Arg4 were replaced by the respective aza-amino acids. The replacement of Arg2 in 3 with a carbamoylated arginine building block and the extension of the N-terminus by an additional arginine led to the high-affinity hexapeptide Ac-Arg-Tyr-Nω-[(4-aminobutyl)aminocarbonyl]Arg-Leu-Arg-Tyr-amide (35), which was used as a precursor for a d-amino acid scan. The target compounds were investigated for Y4R functional activity in assays with complementary readouts: aequorin Ca2+ and β-arrestin 1 or β-arrestin 2 assays. In contrast to the parent compounds, which are Y4R agonists, several ligands were able to suppress the effect elicited by the endogenous ligand pancreatic polypeptide and therefore represent a novel class of peptide Y4R antagonists.
Collapse
Affiliation(s)
- Kilian
K. Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Miho Tanaka
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Takeaki Ozawa
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| |
Collapse
|
3
|
Kuhn KK, Ertl T, Dukorn S, Keller M, Bernhardt G, Reiser O, Buschauer A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J Med Chem 2016; 59:6045-58. [DOI: 10.1021/acs.jmedchem.6b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kilian K. Kuhn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Stefanie Dukorn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Keller M, Weiss S, Hutzler C, Kuhn KK, Mollereau C, Dukorn S, Schindler L, Bernhardt G, König B, Buschauer A. N(ω)-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y1 Receptor Antagonists and a Radiolabeled Selective High-Affinity Molecular Tool ([(3)H]UR-MK299) with Extended Residence Time. J Med Chem 2015; 58:8834-49. [PMID: 26466164 DOI: 10.1021/acs.jmedchem.5b00925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Analogues of the argininamide-type NPY Y1 receptor (Y1R) antagonist BIBP3226, bearing carbamoyl moieties at the guanidine group, revealed subnanomolar Ki values and caused depression of the maximal response to NPY (calcium assay) by up to 90% in a concentration- and time-dependent manner, suggesting insurmountable antagonism. To gain insight into the mechanism of binding of the synthesized compounds, a tritiated antagonist, (R)-N(α)-diphenylacetyl-N(ω)-[2-([2,3-(3)H]propionylamino)ethyl]aminocarbonyl-(4-hydroxybenzyl)arginin-amide ([(3)H]UR-MK299, [(3)H]38), was prepared. [(3)H]38 revealed a dissociation constant in the picomolar range (Kd 0.044 nM, SK-N-MC cells) and very high Y1R selectivity. Apart from superior affinity, a considerably lower target off-rate (t1/2 95 min) was characteristic of [(3)H]38 compared to that of the higher homologue containing a tetramethylene instead of an ethylene spacer (t1/2 3 min, Kd 2.0 nM). Y1R binding of [(3)H]38 was fully reversible and fully displaceable by nonpeptide antagonists and the agonist pNPY. Therefore, the insurmountable antagonism observed in the functional assay has to be attributed to the extended target-residence time, a phenomenon of relevance in drug research beyond the NPY receptor field.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Mollereau
- CNRS/IPBS (Institut de Pharmacologie et Biologie Structurale) , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | | | | | | | | | | |
Collapse
|