1
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Gomha SM, El-Sayed AAAA, Zaki MEA, Alrehaily A, Elbadawy HM, Al-Shahri ABA, Alsenani SR, Abouzied AS. Synthesis, In vitro and In silico Studies of Novel Bis-triazolopyridopyrimidines from Curcumin Analogues as Potential Aromatase Agents. Chem Biodivers 2024; 21:e202400701. [PMID: 38829745 DOI: 10.1002/cbdv.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Breast cancer remains a major global health issue, particularly affecting women and contributing significantly to mortality rates. Current treatments for estrogen receptor-positive breast cancers, such as aromatase inhibitors, are effective but often come with side effects and resistance issues. This study addresses these gaps by targeting aromatase, an enzyme crucial for estrogen synthesis, which plays a pivotal role in breast cancer progression. The innovative approach involves synthesizing novel bis-triazolopyridopyrimidines, designed to leverage the combined pharmacological benefits of pyridopyrimidine and 1,2,4-triazole structures, known for their potent aromatase inhibition and anti-cancer properties. These compounds were synthesized and characterized using 1H-NMR, 13C-NMR, and MS spectral analyses, and their anticancer efficacy was evaluated through MTT assays against MCF-7 breast cancer cell lines in vitro. Molecular docking analyses revealed strong binding energies with aromatase, particularly for compounds 5 b, 5 c, 10 a, and 10 b, indicating their potential as effective aromatase inhibitors. The study highlights these compounds as promising candidates for further development as therapeutic agents against breast cancer.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abdulwahed Alrehaily
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, 41477, Saudi Arabia
| | - Ahmad Bin Ali Al-Shahri
- Department of Jurisprudence of Sunnah and Its Sources, Faculty of the Noble Hadith, Islamic University of Madinah., Madinah, 41477, Saudi Arabia
| | - Saleh Rashed Alsenani
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12311, Egypt
| |
Collapse
|
3
|
Pasha MH, Gondal HY, Munir S, Alhussain SA, Zaki MEA. New enantioenriched β-indolyl ketones as aromatase inhibitors: Unraveling heme-ligand interactions by MD simulation and MMPBSA analysis. Arch Pharm (Weinheim) 2024; 357:e2400010. [PMID: 38578079 DOI: 10.1002/ardp.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
A series of enantioenriched β-indolyl ketones as aromatase inhibitors (AI) is synthesized through the Michael-type Friedel-Crafts alkylation of indole. A highly efficient bifunctionalized amino catalyst is developed to access structurally diverse β-indolyl ketones in high yields (up to 91%) and excellent enantioselectivity (enantiomeric ratio up to 98:2). All the synthesized compounds demonstrated promising aromatase inhibitory potential, where ortho-substituted analogs (3c and 3e) were found most active with IC50 values of 0.68 and 0.90 µM, respectively. Both of these compounds exhibited significant cytotoxicity (IC50 = 0.34 and 0.37 µM) against the MCF-7 breast cancer cell line in the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Molecular docking studies of the synthesized compounds demonstrate favorable binding interactions with the estrogens controlling CYP19A1 (3EQM) and metabolizing CYP3A4 (5VCC) enzymes. Molecular dynamic (MD) simulation analysis revealed the essentiality of heme-ligand interactions to build a stable protein-ligand complex. An average root mean square deviation of 0.35 nm observed during a 100-ns MD simulation and binding free energy in the range of -190 to -227 kJ/mol calculated by g_mmpbsa analysis authenticated the stability of the 3c-3EQM complex. ADMET and drug-likeness parameters supported the suitability of these indole derivatives as the drug lead to develop potent inhibitors for estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Maira Hasnain Pasha
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | | | - Shanza Munir
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Sami A Alhussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Janowska S, Holota S, Lesyk R, Wujec M. Aromatase Inhibitors as a Promising Direction for the Search for New Anticancer Drugs. Molecules 2024; 29:346. [PMID: 38257259 PMCID: PMC10819800 DOI: 10.3390/molecules29020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aromatase is an enzyme that plays a crucial role in the biosynthesis of estrogens, which are hormones that contribute to the growth of certain types of breast cancer. In particular, aromatase catalyzes the conversion of androgens (male hormones) into estrogens (female hormones) in various tissues, including the adrenal glands, ovaries, and adipose tissue. Given the role of estrogen in promoting the growth of hormone-receptor-positive breast cancers, aromatase has become an important molecular target for the development of anticancer agents. Aromatase inhibitors can be classified into two main groups based on their chemical structure: steroidal and non-steroidal inhibitors. This work presents a review of the literature from the last ten years regarding the search for new aromatase inhibitors. We present the directions of search, taking into account the impact of structure modifications on anticancer activity.
Collapse
Affiliation(s)
- Sara Janowska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Salem M, Mahrous EM, Ragab EA, Nafie MS, Dawood KM. Synthesis and Anti-Breast Cancer Potency of Mono- and Bis-(pyrazolyl[1,2,4]triazolo[3,4- b][1,3,4]thiadiazine) Derivatives as EGFR/CDK-2 Target Inhibitors. ACS OMEGA 2023; 8:35359-35369. [PMID: 37779952 PMCID: PMC10536063 DOI: 10.1021/acsomega.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
The target mono- and bis-(6-pyrazolyltriazolo-thiadiazine) derivatives 4a-c and 6a-d were synthesized using a straightforward protocol via reaction of 3-bromoacetylpyrazole 2 with 4-amino-s-triazole-3-thiols 3a-c and bis(4-amino-5-mercapto-s-triazol-3-yl)alkanes 5a-d, respectively. The bis(6-pyrazolyl-s-triazolo[3,4-b][1,3,4]thiadiazine) derivatives 8a,b and 10 were also constructed by reaction of the triazolo[3,4-b][1,3,4]thiadiazine-3-thiol 4c with the proper dibromo compounds 7a,b and 9, respectively. Structures of the new substances were determined by spectroscopic and analytical data. Compounds 4b, 4c, and 6a showed potent cytotoxicity against MCF-7 (IC50 = 3.16, 2.74, and 0.39 μM, respectively) and were safe against the MCF-10A cells. Compounds 4b, 4c, and 6a also showed promising dual EGFR and CDK-2 inhibition activities, particularly 6a was the most effective (IC50 = 19.6 and 87.9 nM, respectively), better than Erlotinib and Roscovitine. Compound 6a treatment induced EGFR and CDK-2 enzyme inhibition by 97.18% and 94.11%, respectively, at 10 μM (the highest concentration). Compound 6a notably induced cell apoptosis in MCF-7 cells, increasing the cell population by total apoptosis 43.3% compared to 1.29% for the untreated control group, increasing the cell population at the S-phase by 39.2% compared to 18.6% (control).
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Esraa M. Mahrous
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Eman A. Ragab
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Mohamed S. Nafie
- Chemistry
Department, College of Sciences, University
of Sharjah, P. O. Box 27272, Sharjah 27272, United Arab
Emirates
- Department
of Chemistry (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Kamal M. Dawood
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
6
|
Diaz de Greñu B, Fernández-Aroca DM, Organero JA, Durá G, Jalón FA, Sánchez-Prieto R, Ruiz-Hidalgo MJ, Rodríguez AM, Santos L, Albasanz JL, Manzano BR. Ferrozoles: Ferrocenyl derivatives of letrozole with dual effects as potent aromatase inhibitors and cytostatic agents. J Biol Inorg Chem 2023; 28:531-547. [PMID: 37458856 DOI: 10.1007/s00775-023-02006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.
Collapse
Affiliation(s)
- Borja Diaz de Greñu
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
| | - Juan A Organero
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Felix Angel Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
| | - M José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ana María Rodríguez
- Departamento de Q. Inorgánica, Orgánica y Bioquímica, IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071, Ciudad Real, Spain
| | - Lucia Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, S/N, 13071, Ciudad Real, Spain
| | - José L Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain.
| |
Collapse
|
7
|
Acar Çevik U, Celik I, Işık A, Ahmad I, Patel H, Özkay Y, Kaplancıklı ZA. Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. J Biomol Struct Dyn 2023; 41:1944-1958. [PMID: 35037830 DOI: 10.1080/07391102.2022.2025906] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer is the most frequent female cancer and second cause of cancer-related deaths among women around the world. Two thirds of breast cancer patients have hormone-dependent tumors, which is very likely be treated with hormonal therapy. Aromatase is involved in the biosynthesis of estrogen thus a critical target for breast cancer. In this study, in order to identify new aromatase enzyme inhibitors, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5.165 ± 0.211 μM and 5.995 ± 0.264 μM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking and dynamics simulations against aromatase enzyme was performed to determine possible protein-ligand interactions and stability. DFT study was performed to evaluate the quantum mechanical and electronic properties of compound 5a. Finally, the theoretical ADME properties of the potential aromatase inhibitor compound 5a were analyzed by calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
8
|
Emami L, Sadeghian S, Mojaddami A, khabnadideh S, Sakhteman A, Sadeghpour H, Faghih Z, Fereidoonnezhad M, Rezaei Z. Design, synthesis and evaluation of novel 1,2,4-triazole derivatives as promising anticancer agents. BMC Chem 2022; 16:91. [DOI: 10.1186/s13065-022-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractHerein, we reported the synthesis of nineteen novel 1,2,4-triazole derivatives including 1,3-diphenyl-2-(1H-1,2,4-triazol-1-yl) propan-1-ones (7a-e), 1-(1,3-diphenylpropan-2-yl)-1H-1,2,4-triazole (8a-c) and 1,4-diphenyl-2-(1H-1,2,4-triazol-1-yl) butane-1,4-diones (10a-k). The structures of these derivatives were confirmed by spectroscopic techniques like IR, 1H-NMR, Mass spectroscopy and Elemental analysis. The cytotoxic activities of the synthesized compounds were evaluated against three human cancer cell lines including MCF-7, Hela and A549 using MTT assay. Compounds 7d, 7e, 10a and 10d showed a promising cytotoxic activity lower than 12 μM against Hela cell line. The safety of these compounds was also, evaluated on MRC-5 as a normal cell line and relieved that most of the synthesized compounds have proper selectivity against normal and cytotoxic cancerous cell lines. Finally, molecular docking studies were also, done to understand the mechanism and binding modes of these derivatives in the binding pocket of aromatase enzyme as a possible target.
Collapse
|
9
|
Osmaniye D, Karaca Ş, Kurban B, Baysal M, Ahmad I, Patel H, Özkay Y, Asım Kaplancıklı Z. Design, synthesis, molecular docking and molecular dynamics studies of novel triazolothiadiazine derivatives containing furan or thiophene rings as anticancer agents. Bioorg Chem 2022; 122:105709. [DOI: 10.1016/j.bioorg.2022.105709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/29/2022]
|
10
|
Feng LS, Su WQ, Cheng JB, Xiao T, Li HZ, Chen DA, Zhang ZL. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019-2021). Arch Pharm (Weinheim) 2022; 355:e2200051. [PMID: 35385159 DOI: 10.1002/ardp.202200051] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
11
|
Osmaniye D, Levent S, Sağlık BN, Karaduman AB, Özkay Y, Kaplancıklı ZA. Novel imidazole derivatives as potential aromatase and monoamine oxidase-B inhibitors against breast cancer. NEW J CHEM 2022. [DOI: 10.1039/d2nj00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity of the synthesized compounds against breast cancer was investigated. Molecular docking studies were performed against aromatase, MAO-B, and Caspase-3 enzymes.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Begum Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
12
|
Design, synthesis, in vitro and in silico studies of some novel triazoles as anticancer agents for breast cancer. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Design, synthesis, in vitro and in silico studies of some novel thiazole-dihydrofuran derivatives as aromatase inhibitors. Bioorg Chem 2021; 114:105123. [PMID: 34214753 DOI: 10.1016/j.bioorg.2021.105123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023]
Abstract
Aromatase inhibitors used against hormone-dependent breast cancer, especially in post-menopausal women, are very susceptible to the development of resistance due to their limited number and long-term use. In this study, it is aimed to obtain new aromatase inhibitors including thiazole and dihydrofuran ring systems. Synthesis of compounds (2a-2l) were performed according to literature methods. Their structures were elucidated by 1H NMR, 13C NMR and APCI-MS spectroscopic methods. MTT test was carried out to assess the cell proliferation effects of the different compounds on two different pulmonary cell lines (A549, CCD-19Lu) and mammary cell line (MCF7). According to MTT assay, it was observed that the calculated IC50 values of some compounds for the CCD-19Lu cell line were found higher than for the A549 and MCF7 cell lines. Considering the viability results, it was found that the selected compounds (2a, 2c, 2e, 2g, 2h, 2l) showed favourable safety profile and have anticancer activities. Apoptotic activities of the selected compounds were investigated by flow cytometry analysis. And were found that have apoptotic effects on cancerous cell lines. In the light of this information, the aromatase inhibition potentials of 2g and 2l compounds, which are the most active derivatives, were examined in vitro and it was determined that they showed a similar inhibition profile with letrazole. Interaction modes between aromatase enzyme and compounds 2g and 2l were investigated by docking studies. In conclusion, findings of these study indicate that compounds 2g and 2l possess significant anticancer activity.
Collapse
|
14
|
Development of new hetero-steroid hybrids with antiproliferative activity against MCF-7 breast cancer cells. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Zorn KM, Foil DH, Lane TR, Hillwalker W, Feifarek DJ, Jones F, Klaren WD, Brinkman AM, Ekins S. Comparing Machine Learning Models for Aromatase (P450 19A1). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15546-15555. [PMID: 33207874 PMCID: PMC8194505 DOI: 10.1021/acs.est.0c05771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aromatase, or cytochrome P450 19A1, catalyzes the aromatization of androgens to estrogens within the body. Changes in the activity of this enzyme can produce hormonal imbalances that can be detrimental to sexual and skeletal development. Inhibition of this enzyme can occur with drugs and natural products as well as environmental chemicals. Therefore, predicting potential endocrine disruption via exogenous chemicals requires that aromatase inhibition be considered in addition to androgen and estrogen pathway interference. Bayesian machine learning methods can be used for prospective prediction from the molecular structure without the need for experimental data. Herein, the generation and evaluation of multiple machine learning models utilizing different sources of aromatase inhibition data are described. These models are applied to two test sets for external validation with molecules relevant to drug discovery from the public domain. In addition, the performance of multiple machine learning algorithms was evaluated by comparing internal five-fold cross-validation statistics of the training data. These methods to predict aromatase inhibition from molecular structure, when used in concert with estrogen and androgen machine learning models, allow for a more holistic assessment of endocrine-disrupting potential of chemicals with limited empirical data and enable the reduction of the use of hazardous substances.
Collapse
Affiliation(s)
- Kimberley M. Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Daniel H. Foil
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Thomas R. Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Wendy Hillwalker
- Global Product Safety, SC Johnson and Son, Inc., Racine, WI, USA
| | | | - Frank Jones
- Global Product Safety, SC Johnson and Son, Inc., Racine, WI, USA
| | | | | | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| |
Collapse
|
16
|
Sağlık BN, Şen AM, Evren AE, Çevik UA, Osmaniye D, Kaya Çavuşoğlu B, Levent S, Karaduman AB, Özkay Y, Kaplancıklı ZA. Synthesis, investigation of biological effects and in silico studies of new benzimidazole derivatives as aromatase inhibitors. ACTA ACUST UNITED AC 2020; 75:353-362. [PMID: 32681791 DOI: 10.1515/znc-2020-0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Inhibition of aromatase enzymes is very important in the prevention of estrogen-related diseases and the regulation of estrogen levels. Aromatase enzyme is involved in the final stage of the biosynthesis of estrogen, in the conversion of androgens to estrogen. The development of new compounds for the inhibition of aromatase enzymes is an important area for medicinal chemists in this respect. In the present study, new benzimidazole derivatives have been designed and synthesized which have reported anticancer activity in the literature. Their anticancer activity was evaluated against human A549 and MCF-7 cell lines by MTT assay. In the series, concerning MCF-7 cell line, the most potent compounds were the 4-benzylpiperidine derivatives 2c, 2g, and 2k with IC50 values of 0.032 ± 0.001, 0.024 ± 0.001, and 0.035 ± 0.001 µM, respectively, compared to the reference drug cisplatin (IC50 = 0.021 ± 0.001 µM). Then, these compounds were subject to further in silico aromatase enzyme inhibition assays to determine the possible binding modes and interactions underlying their activity. Thanks to molecular docking studies, the effectiveness of these compounds against aromatase enzyme could be simulated. Consequently, it has been found that these compounds can be settled very properly to the active site of the aromatase enzyme.
Collapse
Affiliation(s)
- Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmet Mücahit Şen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Department of Pharmacy Services, Vocational School of Health Services, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, 67600 Zonguldak, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
17
|
Synthesis, Docking Studies and Biological Activity of New Benzimidazole- Triazolothiadiazine Derivatives as Aromatase Inhibitor. Molecules 2020; 25:molecules25071642. [PMID: 32252458 PMCID: PMC7180718 DOI: 10.3390/molecules25071642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023] Open
Abstract
In the last step of estrogen biosynthesis, aromatase enzyme catalyzes the conversion of androgens to estrogens. Aromatase inhibition is an important way to control estrogen-related diseases and estrogen levels. In this study, sixteen of benzimidazole-triazolothiadiazine derivatives have been synthesized and studied as potent aromatase inhibitors. First, these compounds were tested for their anti-cancer properties against human breast cancer cell line (MCF-7). The most active compounds 5c, 5e, 5k, and 5m on MCF-7 cell line were subject to further in vitro aromatase enzyme inhibition assays to determine the possible mechanisms of action underlying their activity. Compound 5e showed slight less potent aromatase inhibitory activity than that of letrozole with IC50 = 0.032 ± 0.042 µM, compared to IC50 = 0.024 ± 0.001 µM for letrozole. Furthermore, compound 5e and reference drug letrozole were docked into human placental aromatase enzyme to predict their possible binding modes with the enzyme. Finally, ADME parameters (absorption, distribution, metabolism, and excretion) of synthesized compounds (5a–5p) were calculated by QikProp 4.8 software.
Collapse
|