1
|
Yousefian M, Hashemi M, Eskandarpour V, Zarghi A, Hadizadeh F, Ghodsi R. New indolin-2-ones, possessing sunitinib scaffold as HDAC inhibitors and anti-cancer agents with potential VEGFR inhibition activity; design, synthesis and biological evaluation. Bioorg Chem 2025; 156:108231. [PMID: 39904079 DOI: 10.1016/j.bioorg.2025.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
New series of indolin-2-ones possessing sunitinib scaffold and a hydroxamic acid moiety were designed and synthesized as inhibitors of HDAC, demonstrating significant anti-cancer properties with potential VEGFR inhibition, using sunitinib and vorinostat as the lead compounds. The newly synthesized compounds incorporate the sunitinib framework along with functional groups derived from vorinostat, thus they can be named the rigid analogs of vorinostat. The cytotoxic effects of these compounds were assessed against two cancer cell lines, HCT116 (human colon cancer) and HT29 (human colon adenocarcinoma), as well as NIH (a normal fibroblast cell line). A majority of the compounds displayed notable cytotoxicity towards HT-29 and HCT-116, with IC50 values ranging from 1.78 to 38.54 µM notably, compound 13c exhibited the highest anti-proliferative effect against HT-29, with an IC50 of 1.78 µM, comparable to or exceeding that of the reference drugs, sunitinib and vorinostat. This compound reduced the expression levels of VEGFR-2 and phosphorylated VEGFR-2 (pVEGFR-2) by approximately 80 % and inhibited the HDAC1 enzyme (IC50 = 1.07 µM), indicating its anticancer activity through the targeting of these enzymes. Further cellular mechanism investigations revealed that compound 13c induced substantial apoptosis in HCT-116 cells, with a total apoptotic cell percentage of 41.1 % in treated cells (2.59 µM), compared to negative control (3.68 %)). The CAM assay also indicated that 13c possesses antiangiogenic property similar to that of sunitinib. Additionally, a molecular docking simulation supported the initial design strategy and suggested a common mode of interaction of compound 13c at the binding sites of VEGFR-2 and HDAC1. These findings suggested that 13c could be as a promising lead targeting VEGFR-2 and HDAC1. Therefore, it deserved further investigation for cancer treatment.
Collapse
Affiliation(s)
- Mozhdeh Yousefian
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Hashemi
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Pharmaceutical Biotechnology School of Pharmacy Mashhad University of Medical Sciences Iran
| | - Vahid Eskandarpour
- Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry School of Pharmacy Shaheed Beheshti University of Medical Sciences Tehran Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Razieh Ghodsi
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran.
| |
Collapse
|
2
|
Valapil DG, Devabattula G, Barahdia AS, Godugu C, Shankaraiah N. Development of 3-indolyl substituted phenyl pyrazolo-carboxamide hybrids as potential type II VEGFR-2 inhibitors and in vitro cytotoxicity studies. Bioorg Med Chem Lett 2025; 117:130070. [PMID: 39674381 DOI: 10.1016/j.bmcl.2024.130070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The progression of tumors is intricately linked to angiogenesis, the formation of new blood vessels, driven primarily by the release of growth factors such as Vascular Endothelial Growth Factor (VEGF). Targeting VEGF signaling through its receptor kinase (VEGFR-2) has emerged as a promising anti-angiogenic strategy for cancer therapy. In this study, we designed and synthesized a series of novel chemical entities based on 3-indolyl substituted phenyl pyrazole-carboxamides through docking studies upon considering the structure of sorafenib and its pattern of type II inhibition of VEGFR-2. Among the synthesized hybrids, 7b was able to significantly inhibit the growth of cancer cell lines, specifically against MCF-7 at 2.12 ± 0.19 μM. Compound 7b also efficiently inhibited VEGFR-2 kinase at a concentration of 2.83 ± 0.86 μM during the in vitro studies. Mechanistic studies revealed that 7b induced apoptosis evidenced by AO/EB, DAPI, and DCFDA staining, and its impact on the migratory ability of the cancer cells were also studied. These findings highlight the potential of 7b as a lead candidate for further development of anti-angiogenic therapies targeting VEGFR-2.
Collapse
Affiliation(s)
- Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Geetanjali Devabattula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aman Singh Barahdia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chandraiah Godugu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
3
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
4
|
Malekan M, Haass NK, Rokni GR, Gholizadeh N, Ebrahimzadeh MA, Kazeminejad A. VEGF/VEGFR axis and its signaling in melanoma: Current knowledge toward therapeutic targeting agents and future perspectives. Life Sci 2024; 345:122563. [PMID: 38508233 DOI: 10.1016/j.lfs.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is responsible for most skin cancer-associated deaths globally. The progression of melanoma is influenced by a number of pathogenic processes. Understanding the VEGF/VEGFR axis, which includes VEGF-A, PlGF, VEGF-B, VEGF-C, and VEGF-D and their receptors, VEGFR-1, VEGFR-2, and VEGFR-3, is of great importance in melanoma due to its crucial role in angiogenesis. This axis generates multifactorial and complex cellular signaling, engaging the MAPK/ERK, PI3K/AKT, PKC, PLC-γ, and FAK signaling pathways. Melanoma cell growth and proliferation, migration and metastasis, survival, and acquired resistance to therapy are influenced by this axis. The VEGF/VEGFR axis was extensively examined for their potential as diagnostic/prognostic biomarkers in melanoma patients and results showed that VEGF overexpression can be associated with unfavorable prognosis, higher level of tumor invasion and poor response to therapy. MicroRNAs linking to the VEGF/VEGFR axis were identified and, in this review, divided into two categories according to their functions, some of them promote melanoma angiogenesis (promotive group) and some restrict melanoma angiogenesis (protective group). In addition, the approach of treating melanoma by targeting the VEGF/VEGFR axis has garnered significant interest among researchers. These agents can be divided into two main groups: anti-VEGF and VEGFR inhibitors. These therapeutic options may be a prominent step along with the modern targeting and immune therapies for better coverage of pathological processes leading to melanoma progression and therapy resistance.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | | | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armaghan Kazeminejad
- Department of Dermatology, Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences,Sari, Iran
| |
Collapse
|
5
|
Cazzato G, Ingravallo G, Ribatti D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers (Basel) 2024; 16:1794. [PMID: 38791873 PMCID: PMC11120419 DOI: 10.3390/cancers16101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Angiogenesis plays a pivotal role in tumor progression, particularly in melanoma, the deadliest form of skin cancer. This review synthesizes current knowledge on the intricate interplay between angiogenesis and tumor microenvironment (TME) in melanoma progression. Pro-angiogenic factors, including VEGF, PlGF, FGF-2, IL-8, Ang, TGF-β, PDGF, integrins, MMPs, and PAF, modulate angiogenesis and contribute to melanoma metastasis. Additionally, cells within the TME, such as cancer-associated fibroblasts, mast cells, and melanoma-associated macrophages, influence tumor angiogenesis and progression. Anti-angiogenic therapies, while showing promise, face challenges such as drug resistance and tumor-induced activation of alternative angiogenic pathways. Rational combinations of anti-angiogenic agents and immunotherapies are being explored to overcome resistance. Biomarker identification for treatment response remains crucial for personalized therapies. This review highlights the complexity of angiogenesis in melanoma and underscores the need for innovative therapeutic approaches tailored to the dynamic TME.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
6
|
Wang Y, Wei T, Zhao M, Huang A, Sun F, Chen L, Lin R, Xie Y, Zhang M, Xu S, Sun Z, Hong L, Wang R, Tian R, Li G. Alkenyl oxindole is a novel PROTAC moiety that recruits the CRL4DCAF11 E3 ubiquitin ligase complex for targeted protein degradation. PLoS Biol 2024; 22:e3002550. [PMID: 38768083 PMCID: PMC11104598 DOI: 10.1371/journal.pbio.3002550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Tianzi Wei
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Risheng Lin
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruilin Tian
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Wu J, Liu X, Zhang J, Yao J, Cui X, Tang Y, Xi Z, Han M, Tian H, Chen Y, Fan Q, Li W, Kong D. Green synthesis and anti-tumor efficacy via inducing pyroptosis of novel 1H-benzo[e]indole-2(3H)-one spirocyclic derivatives. Bioorg Chem 2024; 142:106930. [PMID: 37890212 DOI: 10.1016/j.bioorg.2023.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Pyroptosis induction is anticipated to be a new approach to developing anti-tumor medications. A novel class of spirocyclic compounds was designed by hybridization of 1H-Benzo[e]indole-2(3H)-one with 1,4-dihydroquinoline and synthesized through a new green "one-pot" synthesis method using 10 wt% SDS/H2O as a solvent to screen novel tumor cell pyroptosis inducers. The anti-tumor activity of all compounds in vitro was determined by the MTT method, and a fraction of the compounds showed good cell growth inhibitory activity. The quantitative structure-activity relationship models of the compounds were established by artificial intelligence random forest algorithm (R2 = 0.9656 and 0.9747). The ideal compound A9 could, in a concentration-dependent manner, prevent ovarian cancer cells from forming colonies, migrating, and invading. Furthermore, A9 could significantly induce pyroptosis and upregulate the expression of pyroptosis-related proteins GSDME-N, in addition to inducing apoptosis and mediating the expression of apoptosis-related proteins in ovarian cancer cells. A9 (5 mg/kg) significantly reduced tumor volume and weight of ovarian cancer in vivo, decreased caspase-3 expression in tumor tissue, and induced the production of GSDME-N. This study provides a green and efficient atom-economic synthesis method for 1H-Benzo[e]indole-2(3H)-one spirocyclic derivatives and a promising pyroptosis inducer with anti-tumor activity.
Collapse
Affiliation(s)
- Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Xin Liu
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Jiali Yao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Xiaolin Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Yaling Tang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Zixuan Xi
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meiting Han
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Haoyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Yan Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Qiyun Fan
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Dulin Kong
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Metwally K, Abo-Dya NE. Pyrrolo[2,3-D]Pyrimidines as EGFR and VEGFR Kinase Inhibitors: A Comprehensive SAR Review. Curr Med Chem 2024; 31:5918-5936. [PMID: 37581522 DOI: 10.2174/0929867331666230815115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Tyrosine kinases are implicated in a wide array of cellular physiological processes, including cell signaling. The discovery of the BCR-ABL tyrosine kinase inhibitor imatinib and its FDA approval in 2001 paved the way for the development of small molecule chemical entities of diverse structural backgrounds as tyrosine kinase inhibitors for the treatment of various ailments. Two of the most prominent tyrosine kinases as drug targets are the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), as evidenced by the clinical success of their many inhibitors in the drug market. Among several other physiological roles, EGFR regulates epithelial tissue development and homeostasis, while VEGFR regulates tumor-induced angiogenesis. The pyrrolo[2,3-d]pyrimidine nucleus represents a deaza-isostere of adenine, the nitrogenous base of ATP. The recent introduction of many pyrrolo[2,3-d]pyrimidines to the drug market as tyrosine kinase inhibitors makes them a hot topic in the medicinal chemistry research area at the present time. This review article comprehensively sheds light on the structure-activity relationship (SAR) of pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR tyrosine kinase inhibitors, aiming to provide help medicinal chemists in the design of future pyrrolopyrimidine kinase inhibitors.
Collapse
Affiliation(s)
- Kamel Metwally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk 71491, Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Saleh MM, El-Moselhy T, El-Bastawissy E, Ibrahim MAA, Sayed SRM, Hegazy MEF, Efferth T, Jaragh-Alhadad LA, Sidhom PA. The mystery of titan hunter: Rationalized striking of the MAPK pathway via Newly synthesized 6-Indolylpyridone-3-Carbonitrile derivatives. Eur J Med Chem 2023; 259:115675. [PMID: 37506545 DOI: 10.1016/j.ejmech.2023.115675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
MAPK pathway sparkles with RTK activation, passes through subsequent downstream RAS-RAF-MEK-ERK signaling cascades, with consequent direct and indirect CDK4/6 signaling activation, and ends with cell survival, division, and proliferation. However, the emergence of anomalies such as mutations or overexpression in one or more points of the pathway could lead to cancer development and drug resistance. Therefore, designing small inhibitors to strike multitudinous MAPK pathway steps could be a promising synergistic strategy to confine cancer. In this study, twelve 6-indolylpyridone-3-carbonitrile candidates were synthesized and assessed in vitro for antineoplastic activity using four cancer cell lines. The initial antiproliferative screening revealed that compounds 3g, 3h, and 3i were the most potent candidates (GI% Avg = 70.10, 73.94, 74.33%, respectively) compared to staurosporine (GI% Avg = 70.99%). The subsequent safety and selectivity assessment showed that 3h exhibited sub-micromolar inhibition against lung cancer cells (HOP-92 GI50 = 0.75 μM) and 13.7 times selectivity toward cancerous cells over normal cells. As a result, 3h was nominated for deep mechanistic studies which evidenced that compound 3h impressively blocks multiple keystones of the MAPK pathway with nanomolar potency (EGFRWT IC50 = 281 nM, c-MET IC50 = 205 nM, B-RAFWT IC50 = 112 nM, and CDK4/6 IC50 = 95 and 184 nM, respectively). Surprisingly, 3h showed a remarkable potency against mutated EGFR and B-RAF, being 4 and 1.3 more selective to the mutated enzymes over the wild-type forms (EGFRT790M IC50 = 69 nM and B-RAFV600E IC50 = 83 nM). Ultimately, combined molecular docking and molecular dynamics (MD) calculations were executed to inspect the mode of binding and the complex stability of 3h towards the keystones of the MAPK pathway.
Collapse
Affiliation(s)
- Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| | - Tarek El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Eman El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Center, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| |
Collapse
|
10
|
Moradi M, Mousavi A, Emamgholipour Z, Giovannini J, Moghimi S, Peytam F, Honarmand A, Bach S, Foroumadi A. Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur J Med Chem 2023; 259:115626. [PMID: 37453330 DOI: 10.1016/j.ejmech.2023.115626] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.
Collapse
Affiliation(s)
- Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Johanna Giovannini
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Honarmand
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff, France; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Ismail MMF, Shawer TZ, Ibrahim RS, Abusaif MS, Kamal MM, Allam RM, Ammar YA. Novel quinoxaline-3-propanamides as VGFR-2 inhibitors and apoptosis inducers. RSC Adv 2023; 13:31908-31924. [PMID: 37915441 PMCID: PMC10616755 DOI: 10.1039/d3ra05066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 is a vital target for therapeutic mediation in various types of cancer. This study was aimed at exploring the cytotoxic activity of seventeen novel quinoxaline-3-propanamides against colon cancer (HCT-116) and breast cancer (MCF-7) using MTT assay. Results revealed that compounds 8, 9, and 14 elicited higher cytotoxicity than the reference drugs, doxorubicin (DOX) and sorafenib. Interestingly, they are more selective for HCT-116 (SI 11.98-19.97) and MCF-7 (SI 12.44-23.87) compared to DOX (SI HCT-116 0.72 and MCF-7 0.9). These compounds effectively reduced vascular endothelial growth factor receptor-2; among them, compound 14 displayed similar VEGFR-2 inhibitory activity to sorafenib (IC50 0.076 M). The ability of 14 to inhibit angiogenesis was demonstrated by a reduction in VEGF-A level compared to control. Furthermore, it induced a significant increase in the percentage of cells at pre-G1 phase by almost 1.38 folds (which could be indicative of apoptosis) and an increase in G2/M by 3.59 folds compared to the control experiment. A flow cytometry assay revealed that compound 14 triggered apoptosis via the programmed cell death and necrotic pathways. Besides, it caused a remarkable increase in apoptotic markers, i.e., caspase-3 p53 and BAX. When compared to the control, significant increase in the expression levels of caspase-3 from 47.88 to 423.10 and p53 from 22.19 to 345.83 pg per ml in MCF-7 cells. As well, it increased the proapoptotic protein BAX by 4.3 times while lowering the antiapoptotic marker BCL2 by 0.45 fold. Docking studies further supported the mechanism, where compound 14 showed good binding to the essential amino acids in the active site of VEGFR-2. Pharmacokinetic properties showed the privilege of these hits over sunitinib: they are not substrates of P-gp protein; this suggests that they have less chance to efflux out of the cell, committing maximum effect; and in addition, they do not allow permeation to the BBB.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Mostafa S Abusaif
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| | - Mona M Kamal
- Department of Pharmacology, Faculty of Pharmacy (Girls), 11754 Al-Azhar University Cairo Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre 12622 Dokki Cairo Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
12
|
Takahashi M, Hamamoto A, Oh-Hashi K, Takemori H, Furuta K, Hirata Y. Antiferroptotic Activities of Oxindole GIF-0726-r Derivatives: Involvement of Ferrous Iron Coordination and Free-Radical Scavenging Capacities. ACS Chem Neurosci 2023; 14:1826-1833. [PMID: 37104649 DOI: 10.1021/acschemneuro.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Ferroptosis and oxytosis are iron- and oxidative stress-dependent cell death pathways strongly implicated in neurodegenerative diseases, cancers, and metabolic disorders. Therefore, specific inhibitors may have broad clinical applications. We previously reported that 3-[4-(dimethylamino)benzyl]-2-oxindole (GIF-0726-r) and derivatives protected the mouse hippocampal cell line HT22 against oxytosis/ferroptosis by suppressing reactive oxygen species (ROS) accumulation. In this study, we evaluated the biological activities of GIF-0726-r derivatives with modifications at the oxindole skeleton and other positions. The addition of a methyl, nitro, or bromo group to C-5 of the oxindole skeleton enhanced antiferroptotic efficacy on HT22 cells during membrane cystine-glutamate antiporter inhibition and ensued intracellular glutathione depletion. In contrast, the substitution of the dimethylamino group on the side chain phenyl ring with a methyl, nitro, or amine group dramatically suppressed antiferroptotic activity regardless of other modifications. Compounds with antiferroptotic activity also directly scavenged ROS and decreased free ferrous ions in both HT22 cells and cell-free reactions while those compounds without antiferroptotic activity had little effect on either ROS or ferrous-ion concentration. Unlike oxindole compounds, which we have previously reported, the antiferroptotic compounds had little effect on the nuclear factor erythroid-2-related factor 2-antioxidant response element pathway. Oxindole GIF-0726-r derivatives with a 4-(dimethylamino)benzyl moiety at C-3 and some types of bulky group at C-5 (whether electron-donating or electron-withdrawing) can suppress ferroptosis, warranting safety and efficacy evaluations in animal models of disease.
Collapse
Affiliation(s)
- Mayu Takahashi
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Izmest'ev AN, Kravchenko AN, Gazieva GA. A new reversible transformation of oxindolylidene derivatives of imidazothiazolotriazine into 3-[(imidazotriazin-3-yl)thio]-2-oxoquinoline-4-carboxylates. Org Biomol Chem 2023; 21:1827-1834. [PMID: 36751947 DOI: 10.1039/d2ob02242g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A simple method for the synthesis of water-soluble potassium 3-[(imidazotriazin-3-yl)thio]-2-oxoquinoline-4-carboxylates was developed based on a new reversible transformation of oxindolylidene derivatives of imidazothiazolotriazine that results from their treatment with potassium hydroxide. The antiproliferative activity of the synthesized compounds was evaluated against 58 cell lines and compared with oxindolylidene derivatives of imidazothiazolotriazine. Quinoline derivatives 3 demonstrated high activity with average GI50 values of <10 μM which are comparable or higher than those of the oxindolylidene imidazothiazolotriazines. Compound 3a, with a pent-3-yl substituent at the nitrogen atom of the quinoline fragment, possessed the highest antiproliferative activity with an average GI50 value of 1.71 μM. The GI50 values of compound 3a against 52 of the 58 cell lines were <1 μM; against the remaining 6 of the 58 cell lines, they were in the range 1.21-39.2 μM.
Collapse
Affiliation(s)
- Alexei N Izmest'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation.
| | - Angelina N Kravchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation.
| | - Galina A Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation.
| |
Collapse
|
14
|
Abdelgawad MA, Hayallah AM, Bukhari SNA, Musa A, Elmowafy M, Abdel-Rahman HM, Abd El-Gaber MK. Design, Synthesis, Molecular Modeling, and Anticancer Evaluation of New VEGFR-2 Inhibitors Based on the Indolin-2-One Scaffold. Pharmaceuticals (Basel) 2022; 15:1416. [PMID: 36422546 PMCID: PMC9698773 DOI: 10.3390/ph15111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 08/30/2023] Open
Abstract
A new series of indoline-2-one derivatives was designed and synthesized based on the essential pharmacophoric features of VEGFR-2 inhibitors. Anti-proliferative activities were assessed for all derivatives against breast (MCF-7) and liver (HepG2) cancer cell lines, using sunitinib as a reference agent. The most potent anti-proliferative derivatives were evaluated for their VEGFR-2 inhibition activity. The effects of the most potent inhibitor, 17a, on cell cycle, apoptosis, and expression of apoptotic markers (caspase-3&-9, BAX, and Bcl-2) were studied. Molecular modeling studies, such as docking simulations, physicochemical properties prediction, and pharmacokinetic profiling were performed. The results revealed that derivatives 5b, 10e, 10g, 15a, and 17a exhibited potent anticancer activities with IC50 values from 0.74-4.62 µM against MCF-7 cell line (sunitinib IC50 = 4.77 µM) and from 1.13-8.81 µM against HepG2 cell line (sunitinib IC50 = 2.23 µM). Furthermore, these compounds displayed potent VEGFR-2 inhibitory activities with IC50 values of 0.160, 0.358, 0.087, 0.180, and 0.078 µM, respectively (sunitinib IC50 = 0.139 µM). Cell cycle analysis demonstrated the ability of 17a to induce a cell cycle arrest of the HepG2 cells at the S phase and increase the total apoptosis by 3.5-fold. Moreover, 17a upregulated the expression levels of apoptotic markers caspase-3 and -9 by 6.9-fold and 3.7-fold, respectively. In addition, 17a increased the expression level of BAX by 2.7-fold while decreasing the expression level of Bcl-2 by 1.9-fold. The molecular docking simulations displayed enhanced binding interactions and similar placement as sunitinib inside the active pocket of VEGFR-2. The molecular modeling calculations showed that all the test compounds were in accordance with Lipinski and Veber rules for oral bioavailability and had promising drug-likeness behavior.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut 71515, Egypt
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Hamdy M. Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Assiut 2014101, Egypt
| | | |
Collapse
|
15
|
Malekan M, Ebrahimzadeh MA. Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions. Curr Top Med Chem 2022; 22:891-920. [PMID: 35260067 DOI: 10.2174/1568026622666220308161710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/09/2022]
Abstract
Breast cancer [BC] is one of the most common cancers among women, one of the leading causes of a considerable number of cancer-related death globally. Among all procedures leading to the formation of breast tumors, angiogenesis has an important role in cancer progression and outcomes. Therefore, various anti-angiogenic strategies have developed so far to enhance treatment's efficacy in different types of BC. Vascular endothelial growth factors [VEGFs] and their receptors are regarded as the most well-known regulators of neovascularization. VEGF binding to vascular endothelial growth factor receptors [VEGFRs] provides cell proliferation and vascular tissue formation by the subsequent tyrosine kinase pathway. VEGF/VEGFR axis displays an attractive target for anti-angiogenesis and anti-cancer drug design. This review aims to describe the existing literature regarding VEGFR inhibitors, focusing on BC treatment reported in the last two decades.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Siddiqui MM, Nagargoje AA, Raza AK, Pisal PM, Shingate BB. [Et
3
NH][HSO
4
] catalyzed solvent‐free synthesis of new 1,2,3‐triazolidene‐indolinone derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Madiha M. Siddiqui
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Amol A. Nagargoje
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Akram K. Raza
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Parshuram M. Pisal
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur India
| | - Bapurao B. Shingate
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| |
Collapse
|
17
|
Chaudhari P, Bari S, Surana S, Shirkhedkar A, Wakode S, Shelar S, Racharla S, Ugale V, Ghodke M. Logical synthetic strategies and structure-activity relationship of indolin-2-one hybrids as small molecule anticancer agents: An overview. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Izmest'ev AN, Anikina L, Zanin IE, Kolotyrkina NG, Ekaterina IS, Kravchenko AN, Gazieva GA. Design, synthesis and in vitro evaluation of the hybrids of oxindolylidene and imidazothiazolotriazine as efficient antiproliferative agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj01454h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-Diethyl-6-oxindolylidenetetrahydroimidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-2,7-dione with 2-propyl substituent at the nitrogen atom of oxindole fragment (1d) was identified previously as a lead compound in an antiproliferative agent discovery effort based on oxindolylidene derivatives of...
Collapse
|
19
|
Eldehna WM, Al-Rashood ST, Al-Warhi T, Eskandrani RO, Alharbi A, El Kerdawy AM. Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: design, synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:270-285. [PMID: 33327806 PMCID: PMC7751407 DOI: 10.1080/14756366.2020.1862101] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a-g, 7a-h, and 13a-b). The N1 -unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d-f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1 -substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d-f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1 -unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1 -substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Razan O. Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Cairo, Egypt
| |
Collapse
|
20
|
Rahimzadeh Oskuei S, Mirzaei S, Reza Jafari-Nik M, Hadizadeh F, Eisvand F, Mosaffa F, Ghodsi R. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2021; 112:104904. [PMID: 33933802 DOI: 10.1016/j.bioorg.2021.104904] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022]
Abstract
Novel imidazole-chalcone derivatives were designed and synthesized as tubulin polymerization inhibitors and anticancer agents. The antiproliferative activity of the imidazole-chalcone was assessed on some human cancer cell lines including A549 (adenocarcinoma human alveolar basal epithelial cells), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells), and HEPG2 (human hepatocellular carcinoma cells). Generally, the imidazole-chalcone derivatives exhibited more cytotoxicity on A549 cancer cells in comparison to the other three cell lines, among them compounds 9j' and 9g showed significant cytotoxicity with IC50 values ranging from 7.05 to 63.43 μM against all the four human cancer cells. The flow cytometry analysis of A549 cancer cells treated with 9g and 9j' displayed that these compounds induced cell cycle arrest at the G2/M phase at low concentrations and increased the number of apoptotic cells (cells in subG1 phase) at higher concentrations. They have also inhibited tubulin polymerization similar to combretastatin A-4 (CA-4). Annexin V binding staining assay in A549 cancer cells revealed that compound 9j' induced apoptosis (early and late). Finally, molecular docking studies of 9j' into the colchicine-binding site of tubulin presented the probable interactions of these compounds with tubulin.
Collapse
Affiliation(s)
- Sara Rahimzadeh Oskuei
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salimeh Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Reza Jafari-Nik
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
El-Adl K, Sakr H, El-Hddad SSA, El-Helby AGA, Nasser M, Abulkhair HS. Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000491. [PMID: 33788290 DOI: 10.1002/ardp.202000491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
The anticancer activity of novel thiazolidine-2,4-diones was evaluated against HepG2, HCT-116, and MCF-7 cells. Among the tested cancer cell lines, HCT-116 was the most sensitive one to the cytotoxic effect of the new derivatives. In particular, compounds 18, 11, and 10 were found to be the most potent derivatives among all the tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with IC50 values ranging from 38.76 to 53.99 µM. The most active antiproliferative derivatives (7-14 and 15-19) were subjected to further biological studies to evaluate their inhibitory potentials against VEGFR-2. The tested compounds displayed a good-to-medium inhibitory activity, with IC50 values ranging from 0.26 to 0.72 µM. Among them, compounds 18, 11, and 10 potently inhibited VEGFR-2 at IC50 values in the range of 0.26-0.29 µM, which are nearly three times that of the sorafenib IC50 value (0.10 µM). Although our derivatives showed lower activities than the reference drug, they could be useful as a template for future design, optimization, adaptation, and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs. The ADMET profile showed that compounds 18, 11, and 10 do not violate any of Lipinski's rules and have a comparable intestinal absorptivity in humans. Also, the new derivatives could not inhibit cytochrome P3A4. Unlike sorafenib and doxorubicin, compounds 18, 11, and 10 are expected to have prolonged dosing intervals. Moreover, compounds 10 and 18 displayed a wide therapeutic index and higher selectivity against cancer cells as compared with their cytotoxicity against normal cells.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, El-Salam City, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sanadelaslam S A El-Hddad
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed Nasser
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|