1
|
Kassab AE, Gedawy EM, Sayed AS. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer's disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation. Int J Biol Macromol 2024; 265:131018. [PMID: 38518928 DOI: 10.1016/j.ijbiomac.2024.131018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aβ) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3β (GSK3-β) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aβ aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| | - Alaa S Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
2
|
Sanad SMH, Mekky AEM. Ultrasound‐Mediated Synthesis of New (Piperazine‐Chromene)‐Linked Bis(thieno[2,3‐
b
]pyridine) Hybrids as Potential Anti‐acetylcholinesterase. ChemistrySelect 2022. [DOI: 10.1002/slct.202203020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sherif M. H. Sanad
- Chemistry Department Faculty of Science Cairo University Giza 12613 Egypt
| | - Ahmed E. M. Mekky
- Chemistry Department Faculty of Science Cairo University Giza 12613 Egypt
| |
Collapse
|
3
|
Liu W, Wu L, Liu W, Tian L, Chen H, Wu Z, Wang N, Liu X, Qiu J, Feng X, Xu Z, Jiang X, Zhao Q. Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 242:114689. [PMID: 36007469 DOI: 10.1016/j.ejmech.2022.114689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022]
Abstract
Multi-targeted directed ligands (MTDLs) are emerging as promising Alzheimer's disease (AD) therapeutic possibilities. Coumarin is a multifunctional backbone with extensive bioactivity that has been utilized to develop innovative anti-neurodegenerative properties and is a desirable starting point for the construction of MTDLs. Herein, we explored and synthesized a series of novel coumarin derivatives and assessed their inhibitory effects on cholinesterase (AChE, BuChE), GSK-3β, and BACE1. Among these compounds, compound 30 displayed the multifunctional profile of targeting the AChE (IC50 = 1.313 ± 0.099 μM) with a good selectivity over BuChE (SI = 24.623), GSK-3β (19.30% inhibition at 20 μM), BACE1 (IC50 = 1.227 ± 0.112 μM), along with moderate HepG2 cytotoxicity, SH-SY5Y cytotoxicity, low HL-7702 cytotoxicity, as well as good blood-brain barrier (BBB) permeability. Kinetic and docking studies indicated that compound 30 was a competitive AChE inhibitor. Furthermore, acute toxicity experiments revealed that it was non-toxic at a dosage of 1000 mg/kg. The ADME prediction results indicate that 30 has acceptable physicochemical properties. Collectively, these findings demonstrated that compound 30 would be a potential multifunctional candidate for AD therapy.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Limeng Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Liting Tian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhongchan Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Nan Wang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xin Liu
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jingsong Qiu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiangling Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zihua Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaowen Jiang
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| |
Collapse
|
4
|
Li RY, Xie JL, Meng D, Deng P. Virtual screening of lead compounds for the treatment of Alzheimer’s disease based on multi-target strategy. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ruo-yu Li
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Jia-li Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Dan Meng
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Ahmed AAM, Mekky AEM, Sanad SMH. New bis(pyrazolo[3,4-b]pyridines) and bis(thieno[2,3-b]pyridines) as potential acetylcholinesterase inhibitors: synthesis, in vitro and SwissADME prediction study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02614-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
7
|
Ahmed AAM, Mekky AEM, Sanad SMH. New piperazine-based bis(thieno[2,3- b]pyridine) and bis(pyrazolo[3,4- b]pyridine) hybrids linked to benzofuran units: Synthesis and in vitro screening of potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed A. M. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Common First Year Deanship, Jouf University, Sakaka, KSA
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
8
|
Rastegari A, Safavi M, Vafadarnejad F, Najafi Z, Hariri R, Bukhari SNA, Iraji A, Edraki N, Firuzi O, Saeedi M, Mahdavi M, Akbarzadeh T. Synthesis and evaluation of novel arylisoxazoles linked to tacrine moiety: in vitro and in vivo biological activities against Alzheimer's disease. Mol Divers 2021; 26:409-428. [PMID: 34273065 DOI: 10.1007/s11030-021-10248-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is now ranked as the third leading cause of death after heart disease and cancer. There is no definite cure for AD due to the multi-factorial nature of the disease, hence, multi-target-directed ligands (MTDLs) have attracted lots of attention. In this work, focusing on the efficient cholinesterase inhibitory activity of tacrine, design and synthesis of novel arylisoxazole-tacrine analogues was developed. In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition assay confirmed high potency of the title compounds. Among them, compounds 7l and 7b demonstrated high activity toward AChE and BChE with IC50 values of 0.050 and 0.039 μM, respectively. Both compounds showed very good self-induced Aβ aggregation and AChE-induced inhibitory activity (79.4 and 71.4% for compound 7l and 61.8 and 58.6% for compound 7b, respectively). Also, 7l showed good anti-BACE1 activity with IC50 value of 1.65 µM. The metal chelation test indicated the ability of compounds 7l and 7b to chelate biometals (Zn2+, Cu2+, and Fe2+). However, they showed no significant neuroprotectivity against Aβ-induced damage in PC12 cells. Evaluation of in vitro hepatotoxicity revealed comparable toxicity of compounds 7l and 7b with tacrine. In vivo studies by Morris water maze (MWM) task demonstrated that compound 7l significantly reversed scopolamine-induced memory deficit in rats. Finally, molecular docking studies of compounds 7l and 7b confirmed establishment of desired interactions with the AChE, BChE, and BACE1 active sites.
Collapse
Affiliation(s)
- Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Fahimeh Vafadarnejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, 2014, Sakaka, Saudi Arabia
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|