1
|
Abulkhair HS, El-Adl K. A decade of research effort in synthesis, biological activity assessments, and mechanistic investigations of sulfamethazine-incorporating molecules. Arch Pharm (Weinheim) 2025; 358:e2500033. [PMID: 40123425 DOI: 10.1002/ardp.202500033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Because of its importance in medicinal chemistry, scientific researchers have been interested in incorporating sulfamethazine in developing biologically active candidates. To achieve this, several synthetic approaches have been adopted. The adopted approaches included condensation with electrophilic reactants, coupling with nucleophilic aromatics and active methylene compounds, Knoevenagel condensation, Doebner Miller reaction, microwave-assisted click cycloaddition, green reaction routes, and multicomponent reaction. Linking this molecular scaffold to a variety of heterocycles in the last 10 years furnished a set of potential anti-inflammatory, antiviral, anticancer, antiparkinsonian, neuroprotective, and antidiabetic candidates targeting H5N1 NA, epidermal growth factor receptor, acetylcholinesterase (AChE), butylcholinesterase (BChE), human carbonic anhydrase (hCA), α-amylase, and α-glucosidase. This review reports all the adopted synthetic approaches, the biological activities studied, structure-activity relationship analyses, and the mechanistic investigations of the reported organic sulfamethazine-incorporating molecules throughout 2015-2024, based on information retrieved from three search engines: Scopus, PubMed, and Google Scholar.
Collapse
Affiliation(s)
- Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
2
|
Nafie MS, Fahmy SA, Kahwash SH, Diab MK, Dawood KM, Abbas AA. Recent advances on anticancer activity of benzodiazine heterocycles through kinase inhibition. RSC Adv 2025; 15:5597-5638. [PMID: 39974315 PMCID: PMC11836603 DOI: 10.1039/d4ra08134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The benzodiazines (phthalazine, quinazoline, quinoxaline, and cinnoline) have emerged as attractive scaffolds for creating novel anticancer drugs. These nitrogen-containing heterocycles are intriguing because they have a variety of configurations and can change chemically, allowing us to tailor their pharmacokinetic and pharmacodynamic features. Numerous studies have found that derivatives of these compounds have potent anticancer properties via inhibiting topoisomerases, protein kinases, and receptor tyrosine kinases. These compounds impair critical processes that control cancer proliferation and survival. Most benzodiazine derivatives have achieved clinical success, demonstrating the heterocycles' therapeutic potential. The use of phthalazine, cinnoline, and quinazoline derivatives should open new avenues in developing better and more targeted cancer treatments. In this overview, we summarize recent advances in synthesizing these compounds and illustrate how they serve as promising chemotherapeutic agents. Therefore, current research organizes the latest information to provide a clearer picture of design strategies that boost efficacy and selectivity, allowing the identification of potential anticancer drug candidates down the line. This research study also highlights the need to establish heterocyclic derivatives as a promising source of new molecules for cancer treatment with improved efficacy and decreased effects.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah 27272 United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Shaima H Kahwash
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed K Diab
- Pest Physiology Department, Plant Protection Research Institute, Agricultural Research Center Giza 12311 Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ashraf A Abbas
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| |
Collapse
|
3
|
Șandor A, Fizeșan I, Ionuț I, Marc G, Moldovan C, Oniga I, Pîrnău A, Vlase L, Petru AE, Macasoi I, Oniga O. Discovery of A Novel Series of Quinazoline-Thiazole Hybrids as Potential Antiproliferative and Anti-Angiogenic Agents. Biomolecules 2024; 14:218. [PMID: 38397456 PMCID: PMC10886515 DOI: 10.3390/biom14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Considering the pivotal role of angiogenesis in solid tumor progression, we developed a novel series of quinazoline-thiazole hybrids (SA01-SA07) as antiproliferative and anti-angiogenic agents. Four out of the seven compounds displayed superior antiproliferative activity (IC50 =1.83-4.24 µM) on HepG2 cells compared to sorafenib (IC50 = 6.28 µM). The affinity towards the VEGFR2 kinase domain was assessed through in silico prediction by molecular docking, molecular dynamics studies, and MM-PBSA. The series displayed a high degree of similarity to sorafenib regarding the binding pose within the active site of VEGFR2, with a different orientation of the 4-substituted-thiazole moieties in the allosteric pocket. Molecular dynamics and MM-PBSA evaluations identified SA05 as the hybrid forming the most stable complex with VEGFR2 compared to sorafenib. The impact of the compounds on vascular cell proliferation was assessed on EA.hy926 cells. Six compounds (SA01-SA05, SA07) displayed superior anti-proliferative activity (IC50 = 0.79-5.85 µM) compared to sorafenib (IC50 = 6.62 µM). The toxicity was evaluated on BJ cells. Further studies of the anti-angiogenic effect of the most promising compounds, SA04 and SA05, through the assessment of impact on EA.hy296 motility using a wound healing assay and in ovo potential in a CAM assay compared to sorafenib, led to the confirmation of the anti-angiogenic potential.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș, Street, 400012 Cluj-Napoca, Romania;
| | - Andreea-Elena Petru
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana Macasoi
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| |
Collapse
|
4
|
Alshaye NA, Elgohary MK, Elkotamy MS, Abdel-Aziz HA. Design, Synthesis and Biological Assessment of N'-(2-Oxoindolin-3-ylidene)-6-methylimidazo[2,1- b]thiazole-5-carbohydrazides as Potential Anti-Proliferative Agents toward MCF-7 Breast Cancer. Pharmaceuticals (Basel) 2024; 17:216. [PMID: 38399431 PMCID: PMC10892120 DOI: 10.3390/ph17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer is a serious threat to the health and lives of women. Two novel series of N'-(2-oxoindolin-3-ylidene)-6-methylimidazo[2,1-b]thiazole-5-carbohydrazides and 1-(aryl)-3-(6-methylimidazo[2,1-b]thiazol-5-yl)ureas were designed, synthesized and investigated for their anticancer efficacy against the MCF-7 breast cell line. Three compounds of the first series showed potent activity toward MCF-7 with IC50 in the range 8.38-11.67 µM, respectively, as compared to Sorafenib (IC50 = 7.55 µM). N'-(1-butyl-2-oxoindolin-3-ylidene)-6-methylimidazo[2,1-b]thiazole-5-carbohydrazide inhibited VEGFR-2 with IC50 = 0.33 µM when compared with Sorafenib (IC50 = 0.09 µM). Furthermore, this compound was introduced to PCR assessment, where it increased Bax, caspase 8, caspase 9 and cytochrome C levels by 4.337-, 2.727-, 4.947- and 2.420-fold, respectively, while it decreased levels of Bcl-2, as the anti-apoptotic gene, by 0.359-fold when compared to the untreated control MCF-7. This compound was also arrested in the G2/M phase by 27.07%, compared with 11.31% for the control MCF-7. Furthermore, it induced early and late apoptosis in MCF-7. In addition, a molecular docking study in the VEGFR-2 active site was performed to assess the binding profile for the most active compounds. Moreover, ADME parameters of the targeted compounds were also evaluated.
Collapse
Affiliation(s)
- Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed K. Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Cairo 11829, Egypt;
| | - Mahmoud S. Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Cairo 11829, Egypt;
| | - Hatem A. Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
5
|
Husseiny EM, S Abulkhair H, El-Dydamony NM, Anwer KE. Exploring the cytotoxic effect and CDK-9 inhibition potential of novel sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles. Bioorg Chem 2023; 133:106397. [PMID: 36753965 DOI: 10.1016/j.bioorg.2023.106397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Regarding the structural analysis of variable effective CDK-9 suppressors, we record the design and synthesis of two new sets of sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles with expected anticancer and CDK-9 inhibiting activity. In the designed molecules, the pyrazole ring and sulphaguanidine fragment were linked together for the first time through diazo linkers as they are expected to enhance the anticancer activity and CDK degrading interaction. All derivatives have been estimated regarding their cytotoxic activity toward three tumor cells where CDK overexpression has been reported (HePG2, HCT-116, and MCF-7). Among these, four derivatives VII, VIII, X, and XIII exerted potent cytotoxicity against the chosen tumor cells presenting IC50 range equal to 2.86-25.89 µM. As well cytotoxicity on non-cancer cells and CDK-9 inhibition assay have been also assessed for these candidates to evaluate their selectivity indices and enzyme inhibition. The 3,5-diaminopyrazole-1-carboxamide derivative XIII showed a superior combined profile as cytotoxic with high selectivity toward cancer cells (HePG2: IC50 = 6.57 µM, SI = 13.31; HCT-116: IC50 = 9.54 µM, SI = 9.16; MCF-7: IC50 = 7.97 µM, SI = 10.97). Accordingly, it has been chosen to evaluate its probable mechanistic effect both in vitro (via enzyme assay, apoptosis induction, and cell cycle study) as well as in silico (through molecular docking). Overall, this work introduces the 3,5-diaminopyrazole-1-carboxamide derivative XIII as a potent CDK-9 inhibitor candidate (IC50 = 0.16 µM) that merits further investigations for the management of breast, colorectal, and hepatic malignancies.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Kurls E Anwer
- Chemistry Department, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt.
| |
Collapse
|
6
|
Musa A, Ihmaid SK, Hughes DL, Said MA, Abulkhair HS, El-Ghorab AH, Abdelgawad MA, Shalaby K, Shaker ME, Alharbi KS, Alotaibi NH, Kays DL, Taylor LJ, Parambi DGT, Alzarea SI, Al-Karmalawy AA, Ahmed HEA, El-Agrody AM. The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations. J Biomol Struct Dyn 2023; 41:12411-12425. [PMID: 36661285 DOI: 10.1080/07391102.2023.2167000] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients. Pyranopyrazole and pyrazolone are privileged options for the development of anticancer agents. Inspired by this proven scientific fact, we report here the synthesis of two new series of suggested anticancer molecules incorporating both heterocycles together with their characterization by IR, 1H NMR, 13C NMR, 13C NMR-DEPT, and X-ray diffraction methods. An attempt to get the pyranopyrazole-gold complexes was conducted but unexpectedly yielded benzylidene-2,4-dihydro-3H-pyrazol-3-one instead. This unexpected result was confirmed by X-ray crystallographic analysis. All newly synthesized compounds were assessed for their anti-proliferative activity against two different human breast cancer cells, and the obtained results were compared with the reference drug Staurosporine. The target compounds revealed variable cytotoxicity with IC50 at a low micromolar range with superior selectivity indices. Target enzyme EGFR-TK and CDK-9 assays showed that compounds 22 and 23 effectively inhibited both biological targets with IC50 values of 0.143 and 0.121 µM, respectively. Molecular docking experiments and molecular dynamics simulation were also conducted to further rationalize the in vitro obtained results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Saleh K Ihmaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid, Jordon
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Musa A Said
- Chemistry Department, College of Sciences, Taibah University, Medina, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, Egypt
| | - Ahmed H El-Ghorab
- Department of Chemistry, College of Science, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Deborah L Kays
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Laurence J Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Malebari AM, E A Ahmed H, Ihmaid SK, Omar AM, Muhammad YA, Althagfan SS, Aljuhani N, A A El-Sayed AA, Halawa AH, El-Tahir HM, Turkistani SA, Almaghrabi M, K B Aljohani A, El-Agrody AM, Abulkhair HS. Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorg Chem 2023; 130:106255. [PMID: 36403336 PMCID: PMC9671780 DOI: 10.1016/j.bioorg.2022.106255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 μM respectively compared with 12.85 and 82.17 μM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| | - Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University Irbid, Jordan
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yosra A Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Sultan S Althagfan
- Clinical and Hospital Pharmacy Department, Taibah University, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Naif Aljuhani
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia; Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba M El-Tahir
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | | | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| |
Collapse
|
8
|
El Rayes SM, El Enany G, Ali IAI, Ibrahim W, Nafie MS. Synthesis of Novel Phthalazinedione-Based Derivatives with Promising Cytotoxic, Anti-bacterial, and Molecular Docking Studies as VEGFR2 Inhibitors. ACS OMEGA 2022; 7:26800-26811. [PMID: 35936456 PMCID: PMC9350887 DOI: 10.1021/acsomega.2c03182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The parent ester methyl-3-[2-(4-oxo-3-phenyl-3,4-dihydro-phthalazin-1-yloxy)-acetylamino] has 18 compounds. The starting material for alkanoates, their corresponding hydrazides, hydrazones, and dipeptides were produced by chemoselective O-alkylation of 2-phenyl-2,3-dihydrophthalazine-1,4-dione with ethyl chloroacetate(4-oxo-3-phenyl-3,4-dihydro-phthalazin-1-yloxy) acetic acid methyl ester. The starting ester was hydrazinolyzed, then azide coupled with amino acid ester hydrochloride to produce several parent esters, and then hydrazinolyzed to produce parent hydrazides. These hydrazides were used to make a series of dipeptides by reacting them with amino acid ester hydrochloride under azide coupling conditions, and they were also condensed with a number of aldehydes to make the hydrazones. These derivatives were subjected to cytotoxicity against HCT-116 and MDA-MB-231 cells and anti-bacterial and molecular docking studies. Results indicated that the tested compounds, especially 7c and 8b with the phenyl phthalazinone moieties, had promising cytotoxicity against the HCT-116 cells with IC50 values of 1.36 and 2.34 μM, respectively. Additionally, the promising compounds 7c and 8b exhibited poor cytotoxicity against WISH cells with much higher IC50 values, so they were safe against normal cells. Compound 8c exhibited potent anti-bacterial activity with inhibition zones of 12 and 11 mm against Staphylococcus aureus and Escherichia coli, respectively. The molecular docking results of compounds 7c and 8b revealed a good binding disposition and the ligand-receptor interactions like the co-crystallized ligand of the VEGFR2 protein, which may be the proposed mode of action. Finally, compounds 7c and 8b exhibited good ADME pharmacokinetics with good drug-likeness parameters. Hence, detailed studies for the mechanism of action of such compounds are highly recommended for the development of new potent anti-cancer and anti-bacterial agents.
Collapse
Affiliation(s)
- Samir M. El Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Gaber El Enany
- Department
of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Kingdom of Saudi Arabia
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 41522, Egypt
| | - Ibrahim A. I. Ali
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Wessam Ibrahim
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Mohamed S. Nafie
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| |
Collapse
|
9
|
Eissa IH, Ibrahim MK, Alesawy MS, El-Adl K. Antiproliferative evaluations of triazoloquinazolines as classical DNA intercalators: Design, synthesis, ADMET profile, and molecular docking. Arch Pharm (Weinheim) 2022; 355:e2100487. [PMID: 35194810 DOI: 10.1002/ardp.202100487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
Novel triazoloquinazolines were designed and synthesized and evaluated as anticancer agents against HepG2 and HCT-116 cells. The biological testing data corresponded well to those of the molecular docking studies. The HCT-116 cell line was most affected due to the actions of our derivatives. Derivative 7a was the most potent one against both HepG2 and HCT116 cells, with IC50 = 7.98 and 5.57 µM, respectively. This compound showed anticancer activity that was nearly equipotent to that of doxorubicin against HepG2 cells, but higher than that of doxorubicin against HCT116 cells (IC50 = 7.94 and 8.07 µM, respectively). Compounds 8, 7b , and 6f showed excellent anticancer activities against both the HCT116 and HepG2 cell lines. The highly active compounds 6f , 7a , 7b , and 8 were evaluated for their DNA-binding activities. Compounds 7a and 8 showed the highest binding activities. These derivatives potently intercalate in DNA, at IC50 values of 42.90 and 48.13 µM, respectively. Derivatives 6f and 7b showed good DNA-binding activities, with IC50 values of 54.24 and 50.56 µM, respectively. Furthermore, in silico calculated ADMET profiles were established for our four highly active derivatives, in comparison to doxorubicin. Our derivatives 6f , 7a , 7b , and 8 showed a very good ADMET profile. Compounds 6f , 7a , 7b , and 8 follow Lipinski's rules, while doxorubicin violates three of these rules.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Chemistry Department, Faculty of Pharmacy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
10
|
Aljuhani A, Ahmed HEA, Ihmaid SK, Omar AM, Althagfan SS, Alahmadi YM, Ahmad I, Patel H, Ahmed S, Almikhlafi MA, El-Agrody AM, Zayed MF, Turkistani SA, Abulkhair SH, Almaghrabi M, Salama SA, Al-Karmalawy AA, Abulkhair HS. In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Adv 2022; 12:26895-26907. [PMID: 36320844 PMCID: PMC9494209 DOI: 10.1039/d2ra04015h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro). With the objective of targeting this receptor, a novel set of pyrido[1,2-a]pyrrolo[2,3-d]pyrimidines with terminal carboxamide fragments was designed, synthesized, and considered as an initial motif for the creation of effective pan-coronavirus inhibitors. Accordingly, nine derivatives (21–29) have been introduced for in vitro assay to evaluate their antiviral activity and cytotoxicity effect against COVID-19 virus using Vero cells. The obtained data revealed that the majority of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with weak or even no detectable cytotoxic effect on Vero cells. Extensive molecular docking simulations highlighted proper non-covalent interaction of new compounds within the binding pocket of Mpro as a potential target for their antiviral activity. In vitro assay for all the synthesized derivatives against the viral Mpro target indicated that compounds 25 and 29 have promising inhibitory activity with IC50 values at low micromolar concentrations. The molecular dynamic simulation results predicted the stability of compound 29 in the binding cavity of SARS-CoV-2 Mpro and hence supported the high inhibitory activity shown by the In vitro assay. These results suggested that compounds 25 and 29 merit further investigations as promising drug candidates for the management of SARS-CoV-2. An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro).![]()
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E. A. Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Saleh K. Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Sultan S. Althagfan
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Yaser M. Alahmadi
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sahar Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assuit, Egypt
| | - Mohannad A. Almikhlafi
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M. El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed F. Zayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | | | - Shorouk H. Abulkhair
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University (Girls), Nasr City 11754, Cairo, Egypt
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Samir A. Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University – Egypt, International Coastal Road, New Damietta 34518, Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University – Egypt, International Coastal Road, New Damietta 34518, Egypt
| |
Collapse
|