1
|
Serry AM, Abdelhafez OM, Khalil WKB, Hamed KA, Mabrouk MI, Shalaby MB, Ahmed EY. In vitro and in vivo antidiabetic evaluation of new Coumarin and Chromone derivatives: Design, synthesis and molecular modeling. Bioorg Chem 2025; 159:108338. [PMID: 40101577 DOI: 10.1016/j.bioorg.2025.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by an imbalance in glucose homeostasis, which raises blood glucose levels. α-glucosidase enzyme hydrolyzes polysaccharides to produce glucose and since glucose is one of the primary energy sources in eukaryotes, α-glucosidase is a target for postprandial hyperglycemia regulation. The design and synthesis of new oxadiazole coumarin (5a,b and 6a,b), acryloyl chromone (10a-c) and pyrazolyl chromone (11a-c) derivatives as naturally based scaffolds are presented in this work. The new compounds were assessed as antidiabetic agents targeting α-glucosidase enzyme. With an IC50 value of 119.7 ± 4.3 μM, compound 11c demonstrated the most promising α-glucosidase inhibitory activity, superior to the standard drug acarbose (IC50 = 300.9 ± 10.9 μM). Furthermore, compared to the group of diabetic rats, the in vivo investigations demonstrated that medium and high dosages of 11c ameliorated the expression of diabetic related genes (GCK, SYT11, SNAP-25 and Ins1). According to the molecular docking results, 11c possessed the best binding energy score (-9.1 kcal/mol) within the α-glucosidase active site, outperforming the rest of the derivatives and the reference inhibitor acarbose (-8.2 kcal/mol). Lastly, an in silico molecular dynamic simulation and a pharmacokinetic study were performed on compound 11c.
Collapse
Affiliation(s)
- Aya M Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Omaima M Abdelhafez
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Karima A Hamed
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed I Mabrouk
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology, General Organisation of Teaching Hospitals and Institutes, Ministry of Health and Population, Dokki, Cairo, Egypt
| | - Eman Y Ahmed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
2
|
Upadhyay R, Tandel P, Patel AB. Halogen-based quinazolin-4(3H)-one derivatives as MCF-7 breast cancer inhibitors: Current developments and structure-activity relationship. Arch Pharm (Weinheim) 2025; 358:e2400740. [PMID: 39535302 DOI: 10.1002/ardp.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Currently, cancer is a serious health challenge with predominance beyond restrictions. Breast cancer remains one of the major contributors to cancer-related morbidity and mortality in women. Chemotherapy continues to be crucial in the treatment of all variants of cancer. Several antitumor drugs are presently in different phases of clinical trials, whereas many more have been approved for clinical use. However, these drugs have the potential to cause adverse effects, and certain individuals may become resistant to them, which would eventually reduce the drug's efficacy. Therefore, it is essential to discover, develop, and improve newer anticancer drug molecules that could potentially inhibit proliferative pathways. In recent years, quinazolinone derivatives, more specifically halogen-substituted 4(3H)-quinazolinone, have drawn attention as a promising new class of chemotherapeutic agents. In addition, these molecules showed significant inhibition in micromolar ranges when tested in vitro against the MCF-7 cell line. Therefore, this study aims to emphasize the intriguing versatility of halogen atoms, providing an in-depth summary and highlighting recent developments in the anticancer properties of halogenated 4(3H)-quinazolinones. It also features a detailed discussion of the structure-activity relationship (SAR) of various functional groups and their interaction with amino acid residues utilizing molecular docking studies. The intent is to foster novel discoveries that can inspire innovative investigations in this domain. Hence, this study simplifies the drug design and development strategies by prolonging the array of pharmacologically active candidates.
Collapse
Affiliation(s)
- Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Pooja Tandel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
3
|
Mahmoud ME, Ahmed EM, Ragab HM, Eltelbany RFA, Hassan RA. Design, synthesis, biological evaluation, and docking studies of novel triazolo[4,3- b]pyridazine derivatives as dual c-Met/Pim-1 potential inhibitors with antitumor activity. RSC Adv 2024; 14:30346-30363. [PMID: 39318461 PMCID: PMC11420776 DOI: 10.1039/d4ra04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Interest has been piqued in c-Met and Pim-1, potential new cancer treatment targets. A variety of triazolo[4,3-b]pyridazine derivatives were synthesized to create powerful dual c-Met/Pim-1 inhibitors having the pharmacophoric elements of both enzyme inhibitors. All derivatives were screened for their cytotoxic effects on 60 cancer cell lines. Compounds 4g and 4a, had strong antiproliferative cytotoxic impacts on tumor cells, with mean GI% values of 55.84 and 29.08%, respectively. Research revealed that 4g has more powerful inhibitory activity against c-Met and Pim-1, with IC50 of 0.163 ± 0.01 and 0.283 ± 0.01 μM, respectively than the reference and derivative 4a. Moreover, compound 4g was the subject of an additional investigation into biological processes. The findings showed that compound 4g caused MCF-7 cells to arrest in the S stage of the cell cycle. Also, it accelerated the progress of apoptosis 29.61-fold more than the control. Compound 4g demonstrated a significantly higher level of caspase-9 and a decreased level of p-PI3K, p-AKT, and p-mTOR compared to staurosporine. Later, analysis of 4g showed good drug-ability and pharmacokinetic properties. A similar mode of interaction at the ATP-binding site of c-Met and Pim-1 compared to the docked ligands was suggested by additional docking studies of compound 4g.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) Cairo Egypt
| | - Eman M Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo Egypt
| | - Hamdy M Ragab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo Egypt
| | - Rania Farag A Eltelbany
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) Cairo Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo Egypt
| |
Collapse
|
4
|
Batran RZ, Ahmed EY, Awad HM, Abdel Latif NA. Naturally based pyrazoline derivatives as aminopeptidase N, VEGFR2 and MMP9 inhibitors: design, synthesis and molecular modeling. RSC Adv 2024; 14:22434-22448. [PMID: 39010911 PMCID: PMC11248911 DOI: 10.1039/d4ra01801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Aminopeptidase N (APN) is regarded as an attractive target for cancer treatment due to its overexpression in various types of malignancies and its close association with cancer angiogenesis, metastasis and invasion. Herein the authors describe the design, synthesis and biological evaluation of some naturally based pyrazoline derivatives. Among these compounds, the diphenylpyrazole carbothioamide 8 showed significant activity and selectivity index (SI = 4.7) on breast (MCF-7) human cancer cell line and was capable of inhibiting APN with pIC50 value of 4.8, comparable to the reference standard. Further evaluation of derivative 8 against VEGFR2 and MMP9 as biomarkers for angiogenesis and invasion showed that the selected compound had an inhibitory activity on both proteins with pIC50 values of 6.7 and 6.4, respectively. Additionally, the migration ability of cells following treatment with the diphenylpyrazole derivative decreased to record a percentage wound closure of 57.77 for compound 8versus 97.03 for the control. The promising derivative arrested cell growth at the G1 phase inducing early and late apoptosis. Finally, docking and ADMET in silico studies were performed.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman Y Ahmed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre Dokki Cairo 12622 Egypt
| | - Nehad A Abdel Latif
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| |
Collapse
|
5
|
Wei Z, Wei N, Su L, Gao S. The molecular effects underlying the pharmacological activities of daphnetin. Front Pharmacol 2024; 15:1407010. [PMID: 39011506 PMCID: PMC11246999 DOI: 10.3389/fphar.2024.1407010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
As an increasingly well-known derivative of coumarin, daphnetin (7,8-dithydroxycoumarin) has demonstrated various pharmacological activities, including anti-inflammation, anti-cancer, anti-autoimmune diseases, antibacterial, organ protection, and neuroprotection properties. Various studies have been conducted to explore the action mechanisms and synthetic methods of daphnetin, given its therapeutic potential in clinical. Despite these initial insights, the precise mechanisms underlying the pharmacological activities of daphnetin remain largely unknown. In order to address this knowledge gap, we explore the molecular effects from the perspectives of signaling pathways, NOD-like receptor protein 3 (NLRP3) inflammasome and inflammatory factors; and try to find out how these mechanisms can be utilized to inform new combined therapeutic strategies.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Na Wei
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Al-Sanea MM, Nasr TM, Bondock S, Gawish AY, Mohamed NM. Design, synthesis and cytotoxic evaluation of novel bis-thiazole derivatives as preferential Pim1 kinase inhibitors with in vivo and in silico study. J Enzyme Inhib Med Chem 2023; 38:2166936. [PMID: 36728746 PMCID: PMC9897788 DOI: 10.1080/14756366.2023.2166936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bis-thiazole derivatives were synthesised conforming to the Pim1 pharmacophore model following Hantzsch condensation. Pim1 has a major role in regulating the G1/S phase which upon inhibition the cell cycle stops at its early stages. Derivatives 3b and 8b showed the best Pim1 IC50 0.32 and 0.24 µM, respectively relative to staurosporine IC50 0.36 µM. Further confirmation of 3b and 8b Pim1 inhibition was implemented by hindering the T47D cell cycle at G0/G1 and S phases where 3b showed 66.5% cells accumulation at G0/G1 phase while 8b demonstrated 26.5% cells accumulation at the S phase compared to 53.9% and 14.9% of a control group for both phases, respectively. Additional in vivo cytotoxic evaluation of 3b and 8b revealed strong antitumor activity with up-regulation of caspase-3 and down-regulation of VEGF and TNF α immune expression with concomitant elevation of malondialdehyde levels in case of 8b.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tamer M. Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Aya Y. Gawish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt
| | - Nada M. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt,CONTACT Nada M. Mohamed Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt
| |
Collapse
|
7
|
Riyahi Z, Asadi P, Hassanzadeh F, Khodamoradi E, Gonzalez A, Karimi Abdolmaleki M. Synthesis of novel conjugated benzofuran-triazine derivatives: Antimicrobial and in-silico molecular docking studies. Heliyon 2023; 9:e18759. [PMID: 37576200 PMCID: PMC10412834 DOI: 10.1016/j.heliyon.2023.e18759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Two new developments of antibacterial agents, a series of benzofuran-triazine based compounds (8a-8h) were designed and synthesized. The derivatives were prepared through conventional chemical reactions and structurally characterized with FT-IR, 1H and 13C NMR techniques. The antibacterial activity of the synthesized derivatives was assessed against gram-positive bacterial strains (Bacillus subtilis, and Staphylococcus aureus) and gram-negative bacterial strains (Salmonella entritidis and Escherichia coli). Compound 8e, with the MIC value of 125-32 μg/μl against all the examined strains of bacteria, was the most active antibacterial compound. The synthesized derivatives were also studied for docking to the binding sites of dihydrofolate reductase (DHFR) receptor which has a key role in drug resistance associated with bacterial infections. The synthesized compounds showed good interaction with the targets through hydrogen bonding and hydrophobic interactions. According to antibacterial and docking studies, compound 8e could be introduced as a candidate for development of antibacterial compounds.
Collapse
Affiliation(s)
- Zahra Riyahi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexa Gonzalez
- Department of Nursing, Texas A&M International University, Laredo, TX 78041, USA
| | - Mahmood Karimi Abdolmaleki
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
8
|
Augsten LV, Göethel G, Gauer B, Feiffer Charão M, von Poser G, Canto RFS, Arbo MD, Eifler-Lima VL, Garcia SC. Antiproliferative activity and toxicity evaluation of 1,2,3-triazole and 4-methyl coumarin hybrids in the MCF7 breast cancer cell line. RSC Med Chem 2023; 14:869-879. [PMID: 37252094 PMCID: PMC10211326 DOI: 10.1039/d3md00031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 12/31/2023] Open
Abstract
Four coumarin-triazole hybrids were selected from our in house library and screened for cytotoxic activity on A549 (lung cancer), HepG2 (liver cancer), J774A1 (mouse sarcoma macrophage), MCF7 (breast cancer), OVACAR (ovarian cancer), RAW (murine leukaemia macrophage), and SiHa (uterus carcinoma) and their in vitro toxicity was assessed on 3T3 (healthy fibroblasts) cell lines. SwissADME pharmacokinetic prediction was performed. Effects on ROS production, mitochondrial membrane potential, apoptosis/necrosis and DNA damage were evaluated. All of the hybrids have good pharmacokinetic predictions. Each of them showed cytotoxic activity against the MCF7 breast cancer cell line, with IC50 between 2.66 and 10.08 μM, lower than cisplatin (45.33 μM) for the same test. One can observe an order of reactivity from the most potent: LaSOM 186 > LaSOM 190 > LaSOM 185 > LaSOM 180, with a better selectivity index than the reference drug cisplatin and the precursor hymecromone, and caused cell death by apoptosis induction. Two compounds showed antioxidant activity in vitro and three disrupted the mitochondrial membrane potential. None of the hybrids caused genotoxic damage to healthy 3T3 cells. All hybrids showed potential for further optimization, mechanism elucidation, in vivo activity and toxicity tests.
Collapse
Affiliation(s)
- Lucas Volnei Augsten
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Gabriela Göethel
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Bruna Gauer
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Mariele Feiffer Charão
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gilsane von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Avenida Ipiranga 2752 - Santa Cecília CEP 90610-000 Porto Alegre RS Brazil
| | - Romulo F S Canto
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Rua Sarmento Leite, 245 Porto Alegre RS Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
9
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
10
|
Elmorsy MR, Abdel-Latif E, Gaffer HE, Mahmoud SE, Fadda AA. Anticancer evaluation and molecular docking of new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives. Sci Rep 2023; 13:2782. [PMID: 36797448 PMCID: PMC9935538 DOI: 10.1038/s41598-023-29908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
3-Amino-4,6-dimethylpyrazolopyridine was applied as a precursor for the synthesis of some new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives through diazotization, followed by coupling with many 2-cyanoacetamide compounds, ethyl 3-(phenylamino)-3-thioxopropanoate, 3-oxo-N-phenylbutanethioamide, and α-bromo-ketone reagents [namely; 2-bromo-1-(4-fluorophenyl)ethan-1-one, 5-bromo-2-(bromoacetyl)thiophene, 3-(2-bromoacetyl)-2H-chromen-2-one and/or 3-chloroacetylacetone]. The prepared compounds were identified by spectroscopic analyses as IR, 1H NMR, and mass data. The anticancer activity of these pyrazolopyridine analogues was investigated in colon, hepatocellular, breast, and cervix carcinoma cell lines. The pyridopyrazolo-triazine compound 5a substituted with a carboxylate group gave a distinguished value of IC50 = 3.89 µM against the MCF-7 cell line compared to doxorubicin as a reference drug. Also, the pyridopyrazolo-triazine compound 6a substituted with the carbothioamide function gave good activity toward HCT-116 and MCF-7 cell lines with IC50 values of 12.58 and 11.71 µM, respectively. The discovered pyrazolopyridine derivatives were studied theoretically by molecular docking, and this study exhibited suitable binding between the active sides of pyrazolopyridine ligands and proteins (PDB ID: 5IVE). The pyridopyrazolo-triazine compound 6a showed the highest free binding energy (- 7.8182 kcal/mol) when docked inside the active site of selected proteins.
Collapse
Affiliation(s)
- Mohamed R. Elmorsy
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ehab Abdel-Latif
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Hatem E. Gaffer
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, 12622 Egypt
| | - Samar E. Mahmoud
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed A. Fadda
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|