1
|
Rathing F, Schepmann D, Wünsch B. Quinolone bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists. Arch Pharm (Weinheim) 2024; 357:e2400279. [PMID: 38889396 DOI: 10.1002/ardp.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Cyclopenta[g]quinolones of type 4 were designed with the aim to bioisosterically replace the phenol of potent GluN2B ligands such as ifenprodil and Ro 25-6981 by the quinolone system and to restrict the conformational flexibility of the aminopropanol substructure in a cyclopentane system. The designed ligands were synthesized in an eight-step sequence starting with terephthalaldehyde (5). Key steps pf the synthesis were the intramolecular Friedel-Crafts acylation of propionic acids 10 to yield the cyclopenta[g]quinolinediones 11 and the Mannich reaction of diketone 11a followed by conjugate addition at the α,β-unsaturated ketone 12a. Although the quinolones 13a, 15a, and 16a contain an H-bond donor group (secondary lactam) as ifenprodil and Ro 25-6981, they show only moderate GluN2B affinity (Ki > 410 nM). However, the introduction of lipophilic substituents at the quinolone N-atom resulted in more than 10-fold increased GluN2B affinity of the benzyl and benzyloxymethyl derivatives cis-13c (Ko = 36 nM) and 13e (Ko = 27 nM). All compounds are selective over the phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The benzyl derivative 13c showed six- and threefold selectivity over σ1 and σ2 receptors, respectively.
Collapse
Affiliation(s)
- Friederike Rathing
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Münster, Germany
| |
Collapse
|
2
|
Prasher P, Mall T, Sharma M. Synthesis and biological profile of benzoxazolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2300245. [PMID: 37379239 DOI: 10.1002/ardp.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Tanisqa Mall
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Markus A, Schreiber JA, Goerges G, Frehland B, Schepmann D, Daniliuc C, Fröhlich R, Seebohm G, Wünsch B. Phenol-benzoxazolone bioisosteres of GluN2B-NMDA receptor antagonists: Unexpected rearrangement during reductive alkylation with phenylcyclohexanone. Arch Pharm (Weinheim) 2022; 355:e2200225. [PMID: 35908158 DOI: 10.1002/ardp.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Negative allosteric modulators of N-methyl- d-aspartate receptors containing the GluN2B subunit represent promising drug candidates for the treatment of various neurological disorders including stroke, epilepsy, and Parkinson's disease. To increase the bioavailability and GluN2B affinity, the phenol of the potent benzazepine-based inhibitor, WMS-1410 (3), was replaced bioisosterically by a benzoxazolone moiety and the phenylbutyl side chain was conformationally restricted in a phenylcyclohexyl substituent. A four-step, one-pot procedure transformed the oxazolo-benzazepine 7 into the phenylcyclohexyl derivative 11. The same protocol was applied to the methylated analog 12, which unexpectedly led to ring-contracted oxazolo-isoquinolines 18. This rearrangement was explained by the additional methyl moiety in the 8-position inhibiting the formation of the planar intermediate iminium ion with phenylcyclohexanone. The allyl protective group of 11 and 18 was removed with RhCl3 and HCl to obtain the tricyclic compounds 5 and 19 without substituent at the oxazolone ring. The structures of the rearranged products 18 and 19 were elucidated by X-ray crystal structure analysis. The oxazolo-isoquinoline trans-18 with allyl moiety (Ki = 89 nM) and the oxazolo-benzazepine 5 without substituent at the oxazolone ring (Ki = 114 nM) showed GluN2B affinity in the same range as the lead compound 3. In two-electrode voltage clamp measurements, 5 displayed only weak inhibitory activity.
Collapse
Affiliation(s)
- Alexander Markus
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | - Julian A Schreiber
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany.,University Hospital Münster, Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Gunnar Goerges
- University Hospital Münster, Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Bastian Frehland
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | - Constantin Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Münster, 48149, Germany
| | - Roland Fröhlich
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Münster, 48149, Germany
| | - Guiscard Seebohm
- University Hospital Münster, Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany.,Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Münster, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany.,Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Münster, Germany
| |
Collapse
|