1
|
Falbo F, Carullo G, Panti A, Spiga O, Gianibbi B, Ahmed A, Campiani G, Ramunno A, Aiello F, Fusi F. Exploring the chemical space around chrysin to develop novel vascular Ca V1.2 channel blockers, promising vasorelaxant agents. Arch Pharm (Weinheim) 2024; 357:e2400536. [PMID: 39239992 DOI: 10.1002/ardp.202400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
The flavonoid chrysin is an effective vascular CaV1.2 channel blocker. The aim of this study was to explore the chemical space around chrysin to identify the structural features that can be modified to develop novel and more effective blockers. Four derivatives (Chrysin 1-4) were synthesised and a functional, electrophysiology and molecular docking approach was pursued to assess their binding mode to CaV1.2 channels and their activity in vascular preparations. Methylation of the 5- and 7-OH of the chrysin backbone caused a marked reduction of the Ca2+ antagonistic potency and efficacy. However, C-8 derivatives showed biophysical features similar to those of the parent compound and, like nicardipine, bound with high affinity to and stabilised the CaV1.2 channel in its inactivated state. The vasorelaxant effects of the four derivatives appeared vessel-specific, addressing the molecules' derivatization towards different targets. In conclusion, the scaffold of chrysin may be considered a valuable starting point for the development of innovative vascular CaV1.2 channel blockers.
Collapse
Affiliation(s)
- Federica Falbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Gabriele Carullo
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Alice Panti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Beatrice Gianibbi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Zhang R, Gao C, Hu M, Wang X, Li S, An Z, Yang X, Xie Y. Synthesis and biological evaluation of the novel chrysin prodrug for non-alcoholic fatty liver disease treatment. Front Pharmacol 2024; 15:1336232. [PMID: 38708081 PMCID: PMC11066169 DOI: 10.3389/fphar.2024.1336232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.
Collapse
Affiliation(s)
- Ruiming Zhang
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chuanyue Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Mingxing Hu
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xingxing Wang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuoyuan Li
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yongmei Xie
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
3
|
Lee JH, Ko YB, Choi YM, Kim J, Cho HD, Choi H, Song HY, Han JM, Cha GH, Lee YH, Kim JM, Kim WS, Byun EB, Yuk JM. CM1, a Chrysin Derivative, Protects from Endotoxin-Induced Lethal Shock by Regulating the Excessive Activation of Inflammatory Responses. Nutrients 2024; 16:641. [PMID: 38474770 DOI: 10.3390/nu16050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Young-Bok Ko
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Obstetrics & Gynecology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Yong-Min Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jinju Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwan-Doo Cho
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyeonil Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ha-Yeon Song
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Jeong-Moo Han
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Woo-Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Eui-Baek Byun
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
4
|
Lu M, Zhang Y, Wang S, Wang X, Zhang S, De J. Ephedrine and pseudoephedrine in Ephedra saxatilis on the vertical altitude gradient changed in southern Tibet Plateau, China. PLoS One 2023; 18:e0290696. [PMID: 37624827 PMCID: PMC10456159 DOI: 10.1371/journal.pone.0290696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Ephedra is one of the world's most important plants, used in medicine, plants and ecology. Most Ephedra grows in plain areas and is stable. But the plateau environment is special, with the change of altitude, the variety difference of plateau Ephedra saxatilis is very obvious. E. saxatilis metabolism on the Tibetan Plateau is not only affected by altitude, but also environmental conditions such as climate conditions and different soil components. However, the change mechanism of E. saxatilis alkaloids in special ecological environment is still unclear. Therefore, we analyzed the metabolic and altitude of E. saxatilis species in the Tibetan Plateau. Through the functional analysis of Kyoto Metabolism and Metabolomic Encyclopedia (KEGG), we can determine that the number of E. saxatilis metabolites decreases with the increase of altitude, and there are differences in metabolism among the three mountains. This was confirmed by univariate analysis of the top five metabolic pathways. Based on the analysis of soil and metabolomics, it was found that soil water content was also a factor affecting E. saxatilis metabolism. According to the difference of vertical height gradient, ephedrine and pseudephedrine showed the same change in vertical altitude under different mountains. Ephedrine increased as the altitude gradient increased, and pseudoephedrine decreased as the altitude gradient decreased. Our results provide valuable information for further study of metabolic mechanism and efficacy stability. It provides useful reference for the research of E. saxatilis planting in special area.
Collapse
Affiliation(s)
- Mengnan Lu
- School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
| | - Yongjuan Zhang
- School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
| | - Shiyan Wang
- School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
| | - Xiaona Wang
- School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
| | - Shengnan Zhang
- School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
| | - Ji De
- School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
| |
Collapse
|