1
|
Pakdaman Kolour SS, Nematollahi S, Dehbozorgi M, Fattahi F, Movahed F, Esfandiari N, Kahrizi MS, Ghavamikia N, Hajiagha BS. Extracecellulr vesicles (EVs) microRNAs (miRNAs) derived from mesenchymal stem cells (MSCs) in osteoarthritis (OA); detailed role in pathogenesis and possible therapeutics. Heliyon 2025; 11:e42258. [PMID: 40007782 PMCID: PMC11850152 DOI: 10.1016/j.heliyon.2025.e42258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The primary cause of pain and disability in the world is osteoarthritis (OA), a common joint disease characterized by the primary pathological alteration in articular cartilage deterioration. The general outcome of treatment is not acceptable despite current interventions. Therefore, joint replacement surgery is frequently needed by patients with severe OA. Mesenchymal stem cells (MSCs) have become a practical treatment choice for preclinical and clinical OA palliation in recent years, mainly due to their unique immunomodulatory attributes. Further, attractive candidates for cell-free therapy for OA are MSC-derived extracecellulr vesicles (EVs) that convey bioactive molecules of the original cells, such as microRNAs. These EVs have been shown to significantly influence the regulation of various physiological activities of cells in the joint cavity. Dysregulated miRNAs upregulate the synthesis of enzymes that degrade cartilage, downregulate the expression of components in the cartilage matrix, promote the production of proinflammatory cytokines, induce programmed cell death in chondrocytes, inhibit the process of autophagy in chondrocytes, and participate in pathways related to pain. MiRNAs are also found in extracellular membranous vesicles (EVs), such as exosomes, and play a role in intercellular communication in osteoarthritic joints. Thus, the biosynthesis, chemical makeup, and mechanism of action of miRNAs-enriched EVs in OA are all thoroughly covered in this review. We additionally discussed how miRNA-enriched MSC-EVs might be used therapeutically to change intercellular interaction in OA.
Collapse
Affiliation(s)
| | - Saeide Nematollahi
- Department of Radiology, Kerman University of Paramedical Sciences, Kerman, Iran
| | | | | | - Fatemeh Movahed
- Department of Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Juma SN, Liao J, Huang Y, Vlashi R, Wang Q, Wu B, Wang D, Wu M, Chen G. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis 2024; 11:100986. [PMID: 38292181 PMCID: PMC10825447 DOI: 10.1016/j.gendis.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis and psoriasis arthritis are two degenerative forms of arthritis that share similar yet also different manifestations at the histological, cellular, and clinical levels. Rheumatologists have marked them as two entirely distinct arthropathies. Given recent discoveries in disease initiation and progression, potential mechanisms, cellular signaling pathways, and ongoing clinical therapeutics, there are now more opportunities for discovering osteoarthritis drugs. This review summarized the osteoarthritis and psoriasis arthritis signaling pathways, crosstalk between BMP, WNT, TGF-β, VEGF, TLR, and FGF signaling pathways, biomarkers, and anatomical pathologies. Through bench research, we demonstrated that regenerative medicine is a promising alternative for treating osteoarthritis by highlighting significant scientific discoveries on entheses, multiple signaling blockers, and novel molecules such as immunoglobulin new antigen receptors targeted for potential drug evaluation. Furthermore, we offered valuable therapeutic approaches with a multidisciplinary strategy to treat patients with osteoarthritis or psoriasis arthritis in the coming future in the clinic.
Collapse
Affiliation(s)
- Salma Nassor Juma
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qingwan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bocong Wu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
3
|
Braun S, Zaucke F, Brenneis M, Rapp AE, Pollinger P, Sohn R, Jenei-Lanzl Z, Meurer A. The Corpus Adiposum Infrapatellare (Hoffa's Fat Pad)-The Role of the Infrapatellar Fat Pad in Osteoarthritis Pathogenesis. Biomedicines 2022; 10:1071. [PMID: 35625808 PMCID: PMC9138316 DOI: 10.3390/biomedicines10051071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, the infrapatellar fat pad (IFP) has gained increasing research interest. The contribution of the IFP to the development and progression of knee osteoarthritis (OA) through extensive interactions with the synovium, articular cartilage, and subchondral bone is being considered. As part of the initiation process of OA, IFP secretes abundant pro-inflammatory mediators among many other factors. Today, the IFP is (partially) resected in most total knee arthroplasties (TKA) allowing better visualization during surgical procedures. Currently, there is no clear guideline providing evidence in favor of or against IFP resection. With increasing numbers of TKAs, there is a focus on preventing adverse postoperative outcomes. Therefore, anatomic features, role in the development of knee OA, and consequences of resecting versus preserving the IFP during TKA are reviewed in the following article.
Collapse
Affiliation(s)
- Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Anna E. Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Patrizia Pollinger
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| |
Collapse
|
4
|
Saw S, Aiken A, Fang H, McKee TD, Bregant S, Sanchez O, Chen Y, Weiss A, Dickson BC, Czarny B, Sinha A, Fosang A, Dive V, Waterhouse PD, Kislinger T, Khokha R. Metalloprotease inhibitor TIMP proteins control FGF-2 bioavailability and regulate skeletal growth. J Cell Biol 2019; 218:3134-3152. [PMID: 31371388 PMCID: PMC6719459 DOI: 10.1083/jcb.201906059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Saw et al. show via the combinatorial deletion of Timp family members in mice that metalloprotease regulation of FGF-2 is a crucial event in the chondrocyte maturation program, underlying the growth plate development and bone elongation responsible for attaining proper body stature. Regulated growth plate activity is essential for postnatal bone development and body stature, yet the systems regulating epiphyseal fusion are poorly understood. Here, we show that the tissue inhibitors of metalloprotease (TIMP) gene family is essential for normal bone growth after birth. Whole-body quadruple-knockout mice lacking all four TIMPs have growth plate closure in long bones, precipitating limb shortening, epiphyseal distortion, and widespread chondrodysplasia. We identify TIMP/FGF-2/IHH as a novel nexus underlying bone lengthening where TIMPs negatively regulate the release of FGF-2 from chondrocytes to allow IHH expression. Using a knock-in approach that combines MMP-resistant or ADAMTS-resistant aggrecans with TIMP deficiency, we uncouple growth plate activity in axial and appendicular bones. Thus, natural metalloprotease inhibitors are crucial regulators of chondrocyte maturation program, growth plate integrity, and skeletal proportionality. Furthermore, individual and combinatorial TIMP-deficient mice demonstrate the redundancy of metalloprotease inhibitor function in embryonic and postnatal development.
Collapse
Affiliation(s)
- Sanjay Saw
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Alison Aiken
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Trevor D McKee
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | - Otto Sanchez
- University of Ontario Institute of Technology, Oshawa, Canada
| | - Yan Chen
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Ashley Weiss
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | | | - Ankit Sinha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Amanda Fosang
- University of Melbourne Department of Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vincent Dive
- Institute of Biology and Technology, Saclay, France
| | - Paul D Waterhouse
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| |
Collapse
|
5
|
Bravo B, Argüello JM, Gortazar AR, Forriol F, Vaquero J. Modulation of Gene Expression in Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Osteoarthritis. Cartilage 2018; 9:55-62. [PMID: 29156945 PMCID: PMC5724676 DOI: 10.1177/1947603516686144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim In the osteoarthritis (OA) disease, all structures of the joint are involved. The infrapatellar Hoffa fat pad is rich in macrophages and granulocytes, which also represents a source of adipose mesenchymal progenitor cells (ASC) cells. In our study, we analyze how OA affects the ability of ASC-derived from Hoffa's fat pad to differentiate into chondrocytes. Material and methodology We took knee Hoffa's pad samples and adipose tissue from the proximal thigh from 6 patients diagnosed with severe OA and from another 6 patients with an anterior cruciate ligament (ACL) rupture without OA. From all the patients, we took subcutaneous adipose tissue from the thigh, as the control group. Samples of synovial fluid (SF) were also extracted. The gene expression was analyzed by real-time quantitative polymerase chain reaction. Results PTH1R and MMP13 expression during chondrogenic differentiation were similar between OA and ACL groups, while the expression of OPG, FGF2, TGFβ, MMP3 were significantly lower in the OA group. Exposure of differentiated ASC to OA SF induced an increase in the expression of OPG, PTH1R, and MMP13 and a decrease in the expression of FGF2 in cell culture of the ACL group. However, expression of none of these factors was altered by the OA synovial fluid in ASC cells of the OA group. Conclusion OA of the knee also affects the mesenchymal stem cells of Hoffa fat, suggesting that Hoffa fat is a new actor in the OA degenerative process that can contribute to the origin, onset, and progression of the disease.
Collapse
Affiliation(s)
- Beatriz Bravo
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain
| | | | - Arancha R. Gortazar
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain
| | - Francisco Forriol
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain,Francisco Forriol, CEU-San Pablo University School of Medicine, Campus Montepríncipe, Boadilla del Monte, Madrid 28668, Spain.
| | - Javier Vaquero
- Department of Orthopaedic Surgery, Hospital Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
6
|
Wang C, Wang WJ, Yan YG, Xiang YX, Zhang J, Tang ZH, Jiang ZS. MicroRNAs: New players in intervertebral disc degeneration. Clin Chim Acta 2015; 450:333-41. [DOI: 10.1016/j.cca.2015.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/29/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
|
7
|
Guan PP, Guo JW, Yu X, Wang Y, Wang T, Konstantopoulos K, Wang ZY, Wang P. The role of cyclooxygenase-2, interleukin-1β and fibroblast growth factor-2 in the activation of matrix metalloproteinase-1 in sheared-chondrocytes and articular cartilage. Sci Rep 2015; 5:10412. [PMID: 25992485 PMCID: PMC4438667 DOI: 10.1038/srep10412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
MMP-1 expression is detected in fluid shear stress (20 dyn/cm(2))-activated and osteoarthritic human chondrocytes, however, the precise mechanisms underlying shear-induced MMP-1 synthesis remain unknown. Using primary chondrocytes and T/C-28a2 chondrocytic cells as model systems, we report that prolonged application of high fluid shear to human chondrocytes induced the synthesis of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β) and fibroblast growth factor-2 (FGF-2), which led to a marked increase in MMP-1 expression. IL-1β, COX-2-dependent PGE2 activated the PI3-K/AKT and p38 signaling pathways, which were in turn responsible for MMP-1 synthesis via NF-κB- and c-Jun-transactivating pathways. Prolonged shear stress exposure (>12 h) induced 15-Deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) synthesis. Although 15d-PGJ2 suppressed PI3-K/AKT and p38 signaling pathways, it stimulated MMP-1 expression via activating heme oxygenase 1 (HO-1). The critical role of COX-2 in regulating MMP-1 expression in articular cartilage in vivo was demonstrated using COX-2(+/-) transgenic mice in the absence or presence of rofecoxib oral administration. These findings provide novel insights for developing therapeutic strategies to combat OA.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| | - Jing-Wen Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| | - Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering
- Johns Hopkins Institute for NanoBioTechnology
- Johns Hopkins Physical Sciences-Oncology Center
- Center of Cancer Nanotechonology Excellence, The Johns Hopkins University, Baltimore, Maryland, United States of America, 21218
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China, 110819
| |
Collapse
|
8
|
Huang K, Zhang C, Zhang XW, Wu LD, Shen LF, Guo QF. Dehydroepiandrosterone (DHEA). ARTHRITIS 2011:432-444. [DOI: 10.1201/b10852-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|