1
|
Zhang X, Li MH, Chen BG, Liu HK, Su XC. Systematic kinetic assay of phenylsulfonyl pyridine derivatives with free thiol for site-specific modification of proteins. Org Biomol Chem 2025; 23:4768-4775. [PMID: 40264272 DOI: 10.1039/d5ob00450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Site-specific modification of proteins with functional groups is a powerful way of understanding the dynamics and functions of proteins. Recently reported phenylsulfonyl pyridine is a thiol-specific moiety and is of great interest for the use of high resolution nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) in structural biology. However, the reactivity of phenylsulfonyl pyridines to free thiols was barely understood, especially considering the effect of the substituent groups in pyridine on the kinetic activity. In this work, we used a number of phenylsulfonyl pyridine derivatives and systematically evaluated the kinetic properties of these compounds with free cysteine at different pHs by means of NMR and UV spectroscopy. The experimental results show that the reactivity of phenylsulfonyl pyridines with free thiols can be tuned by substitution of pyridine or metal ion coordination, with a range of reaction rates from one to five orders of magnitude. These kinetic parameters provide valuable insights into the protein site-specific modification by the phenylsulfonyl pyridine moiety, as demonstrated in the present study.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Element-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mo-Han Li
- State Key Laboratory of Element-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ben-Guang Chen
- State Key Laboratory of Element-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hong-Kai Liu
- State Key Laboratory of Element-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xun-Cheng Su
- State Key Laboratory of Element-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Guo SL, Pan BB, Li XY, Xiao YH, Su XC. 19F-PCS measurements on proteins in live mammalian cells. Chem Commun (Camb) 2025; 61:1156-1159. [PMID: 39691950 DOI: 10.1039/d4cc05667a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Pseudocontact shift (PCS) contains rich structural information of proteins in structural and chemical biology. 19F-PCS is determined in live mammalian cells via dual labelling of the target protein with a paramagnetic tag and a 19F-tag, which is achieved by varied reactivity of solvent exposed cysteines in selection of different types of tags. About 0.1 ppm 19F-PCS can be observed over 20 Å from the paramagnetic center in the live cells.
Collapse
Affiliation(s)
- Shu-Li Guo
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Xia-Yan Li
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Hao Xiao
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Ma B, Chen JL, Cui CY, Yang F, Gong YJ, Su XC. Rigid, Highly Reactive and Stable DOTA-like Tags Containing a Thiol-Specific Phenylsulfonyl Pyridine Moiety for Protein Modification and NMR Analysis*. Chemistry 2021; 27:16145-16152. [PMID: 34595784 DOI: 10.1002/chem.202102495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Site specific installation of a paramagnetic ion with magnetic anisotropy in a biomolecule generates valuable structural restraints, such as pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs). These paramagnetic effects can be used to characterize the structures, interactions and dynamics of biological macromolecules and their complexes. Two single-armed DOTA-like tags, BrPSPy-DO3M(S)A-Ln and BrPSPy-6M-DO3M(S)A-Ln, each containing a thiol-specific reacting group, that is, a phenylsulfonyl pyridine moiety, are demonstrated as rigid, reactive and stable paramagnetic tags for protein modification by formation of a reducing resistant thioether bond between the protein and the tag. The two tags present high reactivity with the solvent exposed thiol group in aqueous solution at room temperature. The introduction of Br at the meta-position in pyridine enhances the reactivity of 4-phenylsulfonyl pyridine towards the solvent exposed thiol group in a protein, whereas the ortho-methyl group in pyridine increases the rigidity of the tag in the protein conjugates. The high performance of these two tags has been demonstrated in different cysteine mutants of ubiquitin and GB1. The high reactivity and rigidity of these two tags can be added in the toolbox of paramagnetic tags suitable for the high-resolution NMR measurements of biological macromolecules and their complexes.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| |
Collapse
|
4
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
5
|
Su XC, Chen JL. Site-Specific Tagging of Proteins with Paramagnetic Ions for Determination of Protein Structures in Solution and in Cells. Acc Chem Res 2019; 52:1675-1686. [PMID: 31150202 DOI: 10.1021/acs.accounts.9b00132] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-resolution NMR spectroscopy is sensitive to local structural variations and subtle dynamics of biomolecules and is an important technique for studying the structures, dynamics, and interactions of these molecules. Small-molecule probes, including paramagnetic tags, have been developed for this purpose. Paramagnetic effects manifested in magnetic resonance spectra have long been recognized as valuable tools for chemical analysis of small molecules, and these effects were later applied in the fields of chemical biology and structural biology. However, such applications require the installation of a paramagnetic center in the biomolecules of interest. Paramagnetic metal ions and stable free radicals are the most widely used paramagnetic probes for biological magnetic resonance spectroscopy, and therefore mild, high-yielding approaches for chemically attaching paramagnetic tags to biomolecules are in high demand. In this Account, we begin by discussing paramagnetic species, especially transition metal ions and lanthanide ions, that are suitable for NMR and EPR studies, particularly for in-cell applications. Thereafter, we describe approaches for site-specific tagging of proteins with paramagnetic ions and discuss considerations involved in designing high-quality paramagnetic tags, including the strength of the binding between the metal-chelating moiety and the paramagnetic ion, the chemical stability, and the flexibility of the tether between the paramagnetic tag and the target protein. The flexibility of a tag correlates strongly with the averaging of paramagnetic effects observed in NMR spectra, and we describe methods for increasing tag rigidity and applications of such tags in biological systems. We also describe specific applications of established site-specific tagging approaches and newly developed paramagnetic tags for the elucidation of protein structures and dynamics at atomic resolution both in solution and in cells. First, we describe the determination of the 3D structure of a short-lived, low-abundance enzyme intermediate complex in real time by using pseudocontact shifts as structural restraints. Second, we demonstrate the utility of stable paramagnetic tags for determining 3D structures of proteins in live cells, and pseudocontact shifts are shown to be valuable structural restraints for in-cell protein analysis. Third, we show that a NMR optimized paramagnetic tag allows one to determine distance restraints on proteins by double electron-electron resonance (DEER) measurements with high spatial resolution both in vitro and in cells. Finally, we summarize recent advances in site-specific tagging of proteins to achieve atomic-resolution information about structural changes of proteins, and the advantages and challenges of magnetic resonance spectroscopy in biological systems.
Collapse
Affiliation(s)
- Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Matos MJ, Navo CD, Hakala T, Ferhati X, Guerreiro A, Hartmann D, Bernardim B, Saar KL, Compañón I, Corzana F, Knowles TPJ, Jiménez‐Osés G, Bernardes GJL. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine‐Selective Protein Modification and Charge Modulation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maria J. Matos
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Claudio D. Navo
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
- CIC bioGUNEBizkaia Technology Park Building 801A 48170 Derio Spain
| | - Tuuli Hakala
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Xhenti Ferhati
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - David Hartmann
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Barbara Bernardim
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Kadi L. Saar
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Ismael Compañón
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Francisco Corzana
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Tuomas P. J. Knowles
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Gonzalo Jiménez‐Osés
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
- CIC bioGUNEBizkaia Technology Park Building 801A 48170 Derio Spain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
7
|
Matos MJ, Navo CD, Hakala T, Ferhati X, Guerreiro A, Hartmann D, Bernardim B, Saar KL, Compañón I, Corzana F, Knowles TPJ, Jiménez-Osés G, Bernardes GJL. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine-Selective Protein Modification and Charge Modulation. Angew Chem Int Ed Engl 2019; 58:6640-6644. [PMID: 30897271 PMCID: PMC6618083 DOI: 10.1002/anie.201901405] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Quaternized vinyl‐ and alkynyl‐pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine‐tagged proteins at near‐stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody–drug conjugate that features a precise drug‐to‐antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl‐ and alkynyl‐pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity.
Collapse
Affiliation(s)
- Maria J Matos
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Claudio D Navo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain.,CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain
| | - Tuuli Hakala
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Xhenti Ferhati
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - David Hartmann
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Barbara Bernardim
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Kadi L Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain.,CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
8
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
9
|
Giannoulis A, Yang Y, Gong YJ, Tan X, Feintuch A, Carmieli R, Bahrenberg T, Liu Y, Su XC, Goldfarb D. DEER distance measurements on trityl/trityl and Gd(iii)/trityl labelled proteins. Phys Chem Chem Phys 2019; 21:10217-10227. [DOI: 10.1039/c8cp07249c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trityl–trityl and trityl–Gd(iii) DEER distance measurements in proteins are performed using a new trityl spin label affording thioether–protein conjugation.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Akiva Feintuch
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Raanan Carmieli
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
10
|
Xu J, Yu C, Feng T, Liu M, Li F, Wang Y, Xu J. N-Carbamoylmaleimide-treated carbon dots: stabilizing the electrochemical intermediate and extending it for the ultrasensitive detection of organophosphate pesticides. NANOSCALE 2018; 10:19390-19398. [PMID: 30307023 DOI: 10.1039/c8nr05098h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To date, numerous methods have been reported for the detection of organophosphorus pesticides (OP) due to their severe potential hazard to the environment, public health and national security. However, very few works have ever found that the signal loss of thiocholine (TCh) during electrochemical processing is a key factor leading to the low sensitivity of acetylcholinesterase (AChE)-based OP electrochemical sensing platforms. Herein, we propose an ultrasensitive detection method for multiple OPs including parathion-methyl, paraoxon, dimethoate and O,O-dimethyl-O-2,2-dichlorovinyl-phosphate using N-carbamoylmaleimide-functionalized carbon dots (N-MAL-CDs) as a nano-stabilizer. For the first time, Michael addition is introduced into an AChE-based OP electrochemical sensing platform to enrich the electrochemical intermediate TCh. The Michael addition between TCh and N-MAL-CDs is demonstrated via XRD, FTIR, SEM and EDS elemental mapping experiments. Due to the stabilization and enhancement of TCh with N-MAL-CDs, the as prepared OP sensing platform achieves ultrahigh sensitivity by detecting the initial electrochemical signals of TCh without signal loss, showing a wide linear range of 3.8 × 10-15-3.8 × 10-10 M for parathion-methyl and 1.8 × 10-14-3.6 × 10-10 M for paraoxon, with a limit of detection of 1.4 × 10-15 M for parathion-methyl and 4.8 × 10-15 M for paraoxon.
Collapse
Affiliation(s)
- Jinjin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen JL, Zhao Y, Gong YJ, Pan BB, Wang X, Su XC. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2018; 70:77-92. [PMID: 29224182 DOI: 10.1007/s10858-017-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Resetco C, Frank D, Kaya NU, Badi N, Du Prez F. Precisely Alternating Functionalized Polyampholytes Prepared in a Single Pot from Sustainable Thiolactone Building Blocks. ACS Macro Lett 2017; 6:277-280. [PMID: 35650902 DOI: 10.1021/acsmacrolett.7b00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyampholytes with precisely alternating cationic and anionic functional groups were prepared using sustainable thiolactone building blocks in a simple one-pot procedure at room temperature and in water. Ring opening of the N-maleamic acid-functionalized homocysteine thiolactone monomer enabled the introduction of different functional groups into the polymer chain, which contributed to both ionic and hydrogen bonding interactions. The resulting polyampholytes exhibited various isoelectric points while maintaining high solubility in water under different pH and ionic strengths, which expands their potential applications. Finally, it is shown that the upper critical solution temperature (UCST) of these alternating polyampholytes in water/ethanol (30/70% vol) solutions can be tuned as a function of the content of ionic and hydroxyl groups.
Collapse
Affiliation(s)
- Cristina Resetco
- Department
of Organic and Macromolecular Chemistry, Polymer Chemistry Research
Group, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium
| | - Daniel Frank
- Department
of Organic and Macromolecular Chemistry, Polymer Chemistry Research
Group, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium
| | - N. Ugur Kaya
- Department
of Organic and Macromolecular Chemistry, Polymer Chemistry Research
Group, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium
- Polymer Science & Technology Department, Graduate School of Science Engineering & Technology, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Nezha Badi
- Department
of Organic and Macromolecular Chemistry, Polymer Chemistry Research
Group, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium
- Institut Charles Sadron (CNRS UPR 22) - University of Strasbourg-ECPM, 23 rue du Loess, 67000 Strasbourg, France
| | - Filip Du Prez
- Department
of Organic and Macromolecular Chemistry, Polymer Chemistry Research
Group, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC. A Reactive, Rigid Gd III Labeling Tag for In-Cell EPR Distance Measurements in Proteins. Angew Chem Int Ed Engl 2017; 56:2914-2918. [PMID: 28145030 DOI: 10.1002/anie.201611051] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2016] [Indexed: 01/17/2023]
Abstract
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in-cell distance measurements by the double electron-electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol-specific DOTA-derivative (DO3MA-3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in-cell distance measurements by the DEER method carried out at W-band frequencies. The high performance of DO3MA-3BrPy-GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High-quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in-cell protein concentrations as low as 5-10 μm.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC. A Reactive, Rigid GdIII
Labeling Tag for In-Cell EPR Distance Measurements in Proteins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yin Yang
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Daniella Goldfarb
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
15
|
Nitsche C, Mahawaththa MC, Becker W, Huber T, Otting G. Site-selective tagging of proteins by pnictogen-mediated self-assembly. Chem Commun (Camb) 2017; 53:10894-10897. [DOI: 10.1039/c7cc06155b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trivalent pnictogens (Pn) enable the selective self-assembly between an engineered di-cysteine motif in a protein and a thiol-containing lanthanide (Ln) probe.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | | | - Walter Becker
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Thomas Huber
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Gottfried Otting
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
16
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
17
|
Yang Y, Huang F, Huber T, Su XC. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2016; 64:103-113. [PMID: 26732873 DOI: 10.1007/s10858-016-0011-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i - 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.
Collapse
Affiliation(s)
- Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Feng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Huang Y, Sun R, Luo Q, Wang Y, Zhang K, Deng X, Zhu W, Li X, Shen Z. In situ
fabrication of paclitaxel-loaded core-crosslinked micelles via thiol-ene “click” chemistry for reduction-responsive drug release. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying Huang
- Department of Geriatric Dentistry; School and Hospital of Stomatology, Peking University; Beijing 100081 People's Republic of China
| | - Rui Sun
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Ying Wang
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Kai Zhang
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
- Zhoushan Stomatology Hospital; Zhoushan 316000 People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry; School and Hospital of Stomatology, Peking University; Beijing 100081 People's Republic of China
| | - Weipu Zhu
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Zhiquan Shen
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
19
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
20
|
Martorana A, Yang Y, Zhao Y, Li QF, Su XC, Goldfarb D. Mn(ii) tags for DEER distance measurements in proteins via C–S attachment. Dalton Trans 2015; 44:20812-6. [DOI: 10.1039/c5dt04123f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tags for Mn2+–Mn2+ distance measurements in proteins with a short and stable linker that generate narrow distance distributions were developed.
Collapse
Affiliation(s)
- Andrea Martorana
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Yu Zhao
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Qing-Feng Li
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|