1
|
Martínez D, Schlossarek T, Würthner F, Soberats B. Isothermal Phase Transitions in Liquid Crystals Driven by Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2024; 63:e202403910. [PMID: 38635375 DOI: 10.1002/anie.202403910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.
Collapse
Affiliation(s)
- Daniel Martínez
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Tim Schlossarek
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
2
|
Li R, Zhang L, Chen T, Wang D. On-Surface Two-Dimensional Polymerization: Advances, Challenges, and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12521-12532. [PMID: 37651313 DOI: 10.1021/acs.langmuir.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Two-dimensional polymers (2DPs) are molecularly thin networks consisting of monomers covalently linked in at least two directions in the molecular plane. Because of the unique structural features and emergent physicochemical properties, 2DPs promise application potentials in catalysis, chemical sensing, and organic electronic devices. On-surface synthesis is of great interest to fabricate 2DPs with atomic precision, and the properties of the 2DPs can be characterized in situ through scanning probe techniques. In this Perspective, we first introduce the recent developments of on-surface 2D polymerization, including the design principle, the synthetic reactions, and the factors affecting the synthesis of 2DPs on surface. Then, we summarize some major challenges in this field, including the fabrication of high-quality 2DPs and the study of the intrinsic electronic properties of 2DPs, and we discuss some of the available solutions to address these issues.
Collapse
Affiliation(s)
- Ruoning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longzhu Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Jiang X, Ji RX, Shen JS. A Non-Hydrolysis Reaction-Based Imine for Fluorescence Response toward Al 3+ Ions with Extremely High Selectivity. Chempluschem 2023; 88:e202300037. [PMID: 36794514 DOI: 10.1002/cplu.202300037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
Designing an imine-based fluorescent probe capable of greatly suppressing the tendency of intrinsic hydrolysis reaction is an attractive topic in the field of chemo-/biosensing. In this work, hydrophobic 1,1'-binaphthyl-2,2'-diamine containing two amine groups was introduced to synthesize probe R-1 bearing two imine bonds linked by two salicylaldehyde (SAs). The hydrophobicity of binaphthyl moiety and the unique clamp-like structure formed from double imine bonds and from ortho-OH on SA part make probe R-1 is able to function as an ideal receptor to coordinate with Al3+ ions, leading to the fluorescence originated from the complex rather than from the assumed hydrolyzed fluorescent amine is turned on. Further study revealed that, when Al3+ ions were introduced, both the hydrophobic binaphthyl moiety and the clamp-like double imine structure in the designed imine-based probe showed important contributions to suppress the intrinsic hydrolysis reaction, resulting in generating a stable coordination complex with an extremely high selectivity in fluorescence response.
Collapse
Affiliation(s)
- Xu Jiang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Rui-Xue Ji
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China.,Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
4
|
Polymeric Emissive Materials Based on Dynamic Covalent Bonds. Molecules 2022; 27:molecules27196635. [PMID: 36235170 PMCID: PMC9570607 DOI: 10.3390/molecules27196635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Dynamic covalent polymers, composed of dynamic covalent bonds (DCBs), have received increasing attention in the last decade due to their adaptive and reversible nature compared with common covalent linked polymers. Incorporating the DCBs into the polymeric material endows it with advanced performance including self-healing, shape memory property, and so forth. However, the emissive ability of such dynamic covalent polymeric materials has been rarely reviewed. Herein, this review has summarized DCBs-based emissive polymeric materials which are classified according to the different types of DCBs, including imine bond, acylhydrazone bond, boronic ester bond, dynamic C-C bond, as well as the reversible bonds based on Diels–Alder reaction and transesterification. The mechanism of chemical reactions and various stimuli-responsive behaviors of DCBs are introduced, followed by typical emissive polymers resulting from these DCBs. By taking advantage of the reversible nature of DCBs under chemical/physical stimuli, the constructed emissive polymeric materials show controllable and switchable emission. Finally, challenges and future trends in this field are briefly discussed in this review.
Collapse
|
5
|
Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on the recent (2015–2021) literature data, the authors analyze the mutual dependence of crystallinity/amorphism and specific surface area and porosity in covalent triazine frameworks (CTFs), taking into account thermodynamic and kinetic control in the synthesis of these 2D nanosheets. CTFs have now become a promising new class of high-performance porous organic materials. They can be recycled and reused easily, and thus have great potential as sustainable materials. For 2D CTFs, numerous examples are given to support the known rule that the structure and properties of any material with a given composition depend on the conditions of its synthesis. The review may be useful for elder students, postgraduate students, engineers and research fellows dealing with chemical synthesis and modern nanotechnologies based on 2D covalent triazine frameworks.
Collapse
|
6
|
New aspects of parahydrogen-induced polarization for C2—C3 hydrocarbons using metal complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ramakrishna E, Tang JD, Tao JJ, Fang Q, Zhang Z, Huang J, Li S. Self-assembly of chiral BINOL cages via imine condensation. Chem Commun (Camb) 2021; 57:9088-9091. [PMID: 34498622 DOI: 10.1039/d1cc01507a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Condensation of an (S)- or (R)-BINOL-derived dialdehyde and tris(2-aminoethyl)amine produced chiral [2+3] imine cages, which were further reduced to furnish more stable chiral amine cages and applied in the enantioselective recognition of (1R,2R)- and (1S,2S)-1,2-diaminocyclohexane.
Collapse
Affiliation(s)
- E Ramakrishna
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jia-Dong Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jia-Ju Tao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jianying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Chen H, Feng G, Liang Q, Zhang E, Shen Y, Lei S, Hu W. An intermolecular hydrogen bond plays a determining role in product selection of a surface confined Schiff-base reaction. Chem Commun (Camb) 2021; 57:6495-6498. [PMID: 34100485 DOI: 10.1039/d1cc01801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we illustrate how the cooperation of intermolecular hydrogen bonds and conformation flexibility leads to the formation of diverse complex covalent nanostructures on the surface, while the relative abundance of the final products can be further tuned by adjusting the molar ratio and concentration of monomers.
Collapse
Affiliation(s)
- Huamei Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Qiu Liang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Enbing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Yongtao Shen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Carbajo D, Ruiz-Sánchez AJ, Nájera F, Pérez-Inestrosa E, Alfonso I. Spontaneous macrocyclization through multiple dynamic cyclic aminal formation. Chem Commun (Camb) 2021; 57:1190-1193. [PMID: 33448267 DOI: 10.1039/d0cc07184f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of aminals in dynamic covalent chemistry is slightly underexplored, probably due to their inherent instability. Here we report the spontaneous [2+2] macrocyclization of tetrakis(aminals). Their unexpected stability and structural modularity, the dynamic nature of the connections and their water tolerance make them appealing systems for future applications as stimulus-responsive materials.
Collapse
Affiliation(s)
- Daniel Carbajo
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Antonio Jesús Ruiz-Sánchez
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica, Campus de Teatinos s/n, Málaga-29071, Spain. and Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, Málaga-29590, Spain
| | - Francisco Nájera
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica, Campus de Teatinos s/n, Málaga-29071, Spain. and Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, Málaga-29590, Spain
| | - Ezequiel Pérez-Inestrosa
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica, Campus de Teatinos s/n, Málaga-29071, Spain. and Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, Málaga-29590, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/Jordi Girona 18-26, Barcelona, 08034, Spain.
| |
Collapse
|
10
|
Gon M, Tanaka K, Chujo Y. Discovery of Functional Luminescence Properties Based on Flexible and Bendable Boron-Fused Azomethine/Azobenzene Complexes with O,N,O-Type Tridentate Ligands. CHEM REC 2021; 21:1358-1373. [PMID: 33394567 DOI: 10.1002/tcr.202000156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Azomethine (C=N) and azo (N=N) scaffolds are a part of structural units in poly(p-phenylene azomethine) (PAM) and poly(p-phenylene azo) (PAZ), respectively. Poly(p-phenylene vinylene) (PPV) is known to be one of luminescent π-conjugated polymers, meanwhile PAM and PAZ, which are the aza-substituted PPV analogues, are regarded as weak or no emissive materials. However, by the boron complexation, intense emission can be induced. Furthermore, environment-sensitivity and stimuli-responsivity were also observed. In this review, we demonstrate unique and versatile luminescent properties based on "flexible and bendable" π-conjugated systems composed of the boron-fused azomethine and azobenzene complexes (BAm and BAz) with the O,N,O-type tridentate ligands. The "flexible and bendable" luminophores showed intriguing optical behaviors, such as thermosalient effect, aggregation-induced emission (AIE) and crystallized-induced emission (CIE). Moreover, highly efficient emissions both in solution and film states were observed from the polymers. We illustrate the results and mechanisms on these luminescent properties from the series of our recent studies with BAm and BAz complexes and polymers.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Cui H, Barboiu M, Chen J. Dynameric Collagen Self-Healing Membranes with High Mechanical Strength for Effective Cell Growth Applications. Chemistry 2020; 26:16994-16999. [PMID: 32761991 DOI: 10.1002/chem.202003269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 01/03/2023]
Abstract
The fabrication of biocompatible adaptive materials with high stiffness and self-healing properties for medical applications is a challenging endeavor. Collagen is a major extracellular matrix component acting as a substrate for cell adhesion and migration. Dynamers are constitutional polymers whose monomeric components are linked through reversible bonds, able to modify their constitution through reversible exchange of their components. In the current work, we demonstrate that the rational combination of collagen and dynameric networks connected with reversible covalent imine bonds is a very important and previously unreported strategy to provide biocompatible membranes with self-healing ability and excellent mechanical strength. The key challenge in the construction of such membranes is the required adaptive interaction between collagen chains and the dynamic cross-linkers, preventing the formation of defects. For example, by varying structure and molecular lengths of the dynamers, the tensile strength of the dynameric membranes reach over 80 MPa, more than 400 % higher than that observed for the reference collagen membrane, and the highest value for break strain found, was 19 %. The self-healing properties were observed when reconnecting two membrane pieces or even from crushed status of the membranes. Moreover, both MTT assay and confocal laser scanning microscopy method demonstrated the good biocompatibility of the collagen membranes, leaving more than 90 % viability for NIH 3T3 cells after 24 h co-culture.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ye Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Han Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
12
|
Kunitake M, Tanoue R, Higuchi R, Yoshimoto S, Haraguchi R, Uemura S, Kimizuka N, Stieg AZ, Gimzewski JK. Monomolecular covalent honeycomb nanosheets produced by surface-mediated polycondensation between 1,3,5-triamino benzene and benzene-1,3,5-tricarbox aldehyde on Au(111). NANOSCALE ADVANCES 2020; 2:3202-3208. [PMID: 36134287 PMCID: PMC9417909 DOI: 10.1039/d0na00180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 06/16/2023]
Abstract
Fabrication of a two-dimensional covalent network of honeycomb nanosheets comprising small 1,3,5-triamino benzene and benzene-1,3,5-tricarboxaldehyde aromatic building blocks was conducted on Au(111) in a pH-controlled aqueous solution. In situ scanning tunneling microscopy revealed a large defect-free and homogeneous honeycomb π-conjugated nanosheet at the Au(111)/liquid interface. An electrochemical potential dependence indicated that the nanosheets were the result of thermodynamic self-assembly based not only on the reaction equilibrium but also on the adsorption (partition) equilibrium, which was controlled by the building block surface coverage as a function of electrode potential.
Collapse
Affiliation(s)
- Masashi Kunitake
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Ryota Tanoue
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Rintaro Higuchi
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Ryusei Haraguchi
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Shinobu Uemura
- Faculty of Engineering and Design, Kagawa University 2217-20 Hayashi-cho Takamatsu Kagawa 761-0396 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Adam Z Stieg
- California NanoSystems Institute 570 Westwood Plaza Los Angeles CA 90095 USA
- WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - James K Gimzewski
- California NanoSystems Institute 570 Westwood Plaza Los Angeles CA 90095 USA
- WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Chemistry and Biochemistry, University of California-Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| |
Collapse
|
13
|
Nakanishi A, Iritani K, Sakihama Y, Ozawa N, Mochizuki A, Watanabe M. Construction of cell-plastics as neo-plastics consisted of cell-layer provided green alga Chlamydomonas reinhardtii covered by two-dimensional polymer. AMB Express 2020; 10:112. [PMID: 32524300 PMCID: PMC7286992 DOI: 10.1186/s13568-020-01046-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Green alga Chlamydomonas reinhardtii has gained interest as a sustainable resource because it can be easily grown using CO2 as a carbon source owing to its high CO2 assimilating activity. Although the robustness of the cell wall of C. reinhardtii makes it difficult to extract its intracellular products, such property is beneficial when using the cell as an ingredient to fabricate “cell-plastic” in this study. The cell layer, which is a component of the cell-plastic, was prepared with an intercellular filler to connect each cell because C. reinhardtii is a single-cell strain. The cell layers were then repeatedly piled to increase the strength of the cell-plastic. To avoid slippage between the cell layers, they were covered with a small amount of a two-dimensional polymer to maintain the flat surface structure of the cell-plastic. Based on the evaluation, the cell-plastic has the potential to be a novel, sustainable plastic using ubiquitous green algal cells in nature. ![]()
Collapse
|
14
|
Chen H, Zhao R, Hu J, Wei Z, McClements DJ, Liu S, Li B, Li Y. One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5412-5425. [PMID: 32320613 DOI: 10.1021/acs.jafc.9b08301] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a polysaccharide widely used as a structuring agent in foods and other materials because of its positive charge (amino groups). At present, however, it is difficult to form and stabilize emulsions using chitosan due to its high hydrophilicity. In this study, oil-in-water emulsions were prepared using a one-pot green-chemistry method. The chitosan and aldehyde molecules were in situ interfacially conjugated during homogenization, which promoted the adsorption of chitosan onto the oil droplet surfaces where they created a protective coating. The universality of this method was verified by using chitosan with different molecular weights and four kinds of natural aldehydes [cinnamaldehyde (CA), citral (CT), citronella (CN), and vanillin (VL)]. Chitosan with higher molecular weight facilitated the formation of emulsions. By harnessing the dynamic covalent nature of imine bonds, chitosan emulsions with an imine link display dynamic behavior with acid-catalyzed hydrolysis. The aldehyde structure could control the pH point of trigger for breakdown of emulsions, which was 1.0, 3.0, 4.0, and 4.0 for CA emulsion, CT emulsion, CN emulsion, and VL emulsion, respectively. At pH 6.5, aldehyde helped to decrease the interfacial tension of chitosan to about 10 mN/m, while this value would increase if the pH decreased by adding acid during the measurement. Chemical kinetics studies indicated that the hydrophobicity and conjugation effect of the aldehyde together determined the trigger points and properties of the emulsion. Finally, we used the optimized emulsions to encapsulate and control the release of curcumin. The gastric release behavior of the curcumin depended on aldehyde structure: VL > CN > CT ≈ CA. Hence, a tailor-made trigger release emulsion system can be achieved by rational selection and design of aldehyde structure to control hydrophobicity and conjugation effect of aldehydes.
Collapse
Affiliation(s)
- Huanle Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
15
|
Kunitake M, Uemura S. Construction and Scanning Probe Microscopy Imaging of Two-dimensional Nanomaterials. CHEM LETT 2020. [DOI: 10.1246/cl.200080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Kunitake
- Faculty of Advanced Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinobu Uemura
- Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| |
Collapse
|
16
|
Zentner CA, Anson F, Thayumanavan S, Swager TM. Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. J Am Chem Soc 2019; 141:18048-18055. [PMID: 31674769 DOI: 10.1021/jacs.9b06852] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interfacial chemistry provides an opportunity to control dynamic materials. By harnessing the dynamic covalent nature of imine bonds, emulsions are generated in situ, predictably manipulated, and ultimately destroyed along liquid-liquid and emulsion-solid interfaces through simple perturbation of the imine equilibria. We report the rapid production of surfactants and double emulsions through spontaneous in situ imine formation at the liquid-liquid interface of oil/water. Complex double emulsions with imine surfactants are stable to neutral and basic conditions and display dynamic behavior with acid-catalyzed hydrolysis and imine exchange. We demonstrate the potential of in situ imine surfactant formation to generate complex surfactants with biomolecules (i.e., antibodies) for biosensing applications. Furthermore, imine formation at the emulsion-solid interface offers a triggered payload release mechanism. Our results illustrate how simple, dynamic interfacial imine formation can translate changes in bonding to macroscopic outputs.
Collapse
Affiliation(s)
- Cassandra A Zentner
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Francesca Anson
- Department of Chemistry , University of Massachusetts - Amherst , Amherst , Massachusetts 01003 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts - Amherst , Amherst , Massachusetts 01003 , United States
| | - Timothy M Swager
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Sakamoto R, Fukui N, Maeda H, Matsuoka R, Toyoda R, Nishihara H. The Accelerating World of Graphdiynes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804211. [PMID: 31222848 DOI: 10.1002/adma.201804211] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/27/2019] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY), a 2D allotrope of graphene, is first synthesized in 2010 and has attracted attention as a new low-dimensional carbon material. This work surveys the literature on GDYs. The history of GDYs is summarized, including their relationship with 2D graphyne carbons and yearly publication trends. GDY is a molecule-based nanosheet woven from a molecular monomer, hexaethynylbenzene; thus, it is synthesized by bottom-up approaches, which allow rich variation via monomer design. The GDY family and the synthetic procedures are also described. Highly developed π-conjugated electronic structures are common important features in GDY and graphene; however, the coexistence of sp and sp2 carbons differentiates GDY from graphene. This difference gives rise to unique physical properties, such as high conductivity and large carrier mobility. Next, the theoretical and experimental studies of these properties are described in detail. A wide variety of applications are proposed for GDYs, including electrocatalysts and energy devices, which exploit the carbon-rich nature, porous framework, and expanded π-electron system of these compounds. Finally, potential uses are discussed.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Naoya Fukui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Maeda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Matsuoka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
18
|
Clair S, de Oteyza DG. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem Rev 2019; 119:4717-4776. [PMID: 30875199 PMCID: PMC6477809 DOI: 10.1021/acs.chemrev.8b00601] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/06/2023]
Abstract
On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix
Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, San
Sebastián 20018, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU-MPC, San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
19
|
Gon M, Tanaka K, Chujo Y. Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180245] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Ren J, Ni B, Liu H, Hu Y, Zhang X, Masuda T. Postpolymerization modification based on dynamic imine chemistry for the synthesis of functional polyacetylenes. Polym Chem 2019. [DOI: 10.1039/c8py01793j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study established a postpolymerization modification method for the preparation of functional polyacetylenes based on dynamic imine chemistry.
Collapse
Affiliation(s)
- Juntao Ren
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Baojian Ni
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Heng Liu
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yanming Hu
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xuequan Zhang
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Toshio Masuda
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
21
|
Sun F, Yang C, Xu W, Liang Y, Chen X, Liang E, Wang G, Zhou N, Yi J. A smart bottom-up strategy for fabrication of complex hydrogel constructs with 3D controllable geometric shapes through dynamic interfacial adhesion. J Mater Chem B 2019; 7:1996-2000. [DOI: 10.1039/c9tb00107g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and facile dynamic interfacial adhesion (DIA) strategy has been successfully applied in the reversible fabrication of complex 3D hydrogel constructs based on dynamic covalent bonds (DCBs).
Collapse
Affiliation(s)
- Fen Sun
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Caixia Yang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Wenyuan Xu
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Yan Liang
- Nanhu College
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Xincheng Chen
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Enxiang Liang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Guoxiang Wang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Ningbo Zhou
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| | - Jianmin Yi
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- China
| |
Collapse
|
22
|
Yang B, Adams DJ, Marlow M, Zelzer M. Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15109-15125. [PMID: 30032622 DOI: 10.1021/acs.langmuir.8b01165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the many parameters that have been explored to exercise control over self-assembly processes, the influence of surface properties on self-assembly has been recognized as important but has received considerably less attention than other factors. This is particularly true for biomolecule-derived self-assembling molecules such as protein, peptide, and nucleobase derivatives. Because of their relevance to biomaterial and drug delivery applications, interest in these materials is increasing. As the formation of supramolecular structures from these biomolecule derivatives inevitably brings them into contact with the surfaces of surrounding materials, understanding and controlling the impact of the properties of these surfaces on the self-assembly process are important. In this feature article, we present an overview of the different surface parameters that have been used and studied for the direction of the self-assembly of protein, peptide, and nucleoside-based molecules. The current mechanistic understanding of these processes will be discussed, and potential applications of surface-mediated self-assembly will be outlined.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Maria Marlow
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Mischa Zelzer
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| |
Collapse
|
23
|
Wang W, Schlüter AD. Synthetic 2D Polymers: A Critical Perspective and a Look into the Future. Macromol Rapid Commun 2018; 40:e1800719. [DOI: 10.1002/marc.201800719] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Wang
- Institute of Polymers; Department of Materials; ETH Zurich, Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - A. Dieter Schlüter
- Institute of Polymers; Department of Materials; ETH Zurich, Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
24
|
Sakai N, Matile S. Conjugated Polyimine Dynamers as Phase-Sensitive Membrane Probes. J Am Chem Soc 2018; 140:11438-11443. [PMID: 30156837 DOI: 10.1021/jacs.8b06668] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this report, dynamic polyimines are introduced as multifunctional sensors of lipid bilayer phases. Under mildly acidic conditions, self-condensation of push-pull amino formyl fluorenes into polyimines occurs in solid- or liquid-ordered phases but not in liquid-disordered phases of vesicular membranes. The obtained conjugated polymers are characterized by a progressive red shift of the absorption maxima, the appearance of exciton-coupled circular dichroism (CD) bands, and fluorescence quenching. These characteristics allow multiple modes of detection of membrane phases, which are known to change under membrane tension.
Collapse
Affiliation(s)
- Naomi Sakai
- Department of Organic Chemistry , University of Geneva , CH-1211 Geneva 4, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry , University of Geneva , CH-1211 Geneva 4, Switzerland
| |
Collapse
|
25
|
Blaise Pascal Medals: A. Corma and P. Samorì / Kavli Prize: E. Charpentier, J. Doudna, and V. Šikšnys. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201807112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Blaise-Pascal-Medaillen: A. Corma und P. Samorì / Kavli-Preis: E. Charpentier, J. Doudna und V. Šikšnys. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Chaudhary M, Mohanty P. Nitrogen enriched polytriazine as a metal-free heterogeneous catalyst for the Knoevenagel reaction under mild conditions. NEW J CHEM 2018. [DOI: 10.1039/c8nj02174k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A nitrogen-enriched nanoporous polytriazine was used as a metal-free heterogeneous organocatalyst for high-yielding ultra-fast Knoevenagel reactions under ambient conditions.
Collapse
Affiliation(s)
- Monika Chaudhary
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- India
| | - Paritosh Mohanty
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- India
| |
Collapse
|