1
|
Parmar S, Tenney L, Liang X, Routzahn JT, Sibley CD, Schneekloth JS. Harnessing Molecular Recognition for Small-Molecule-Mediated Reversible Photochemical Control Over mRNA Translation. Angew Chem Int Ed Engl 2025:e202503078. [PMID: 40163345 DOI: 10.1002/anie.202503078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Chemical probes that control the function of complex RNA molecules offer unique opportunities to interrogate biological systems. In this study, we demonstrate that a small molecule ligand selectively recognizes and undergoes traceless, reversible photocrosslinking to PreQ1 RNA aptamers. This effect is selective and dependent on both the chemical structure and RNA sequence/structure. A homogeneously modified, caged mRNA construct containing a PreQ1 aptamer and an eGFP or wild type p53 coding sequence displayed repressed translation in vitro or in cells until irradiated with 302 nm light, resulting in cleavage of the photocage and restoration of translation. This method demonstrates for the first time that aptamer-based molecular recognition of a small molecule ligand can be used to precisely and photochemically activate the translation of a complex mRNA in cells.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Logan Tenney
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Xiao Liang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - John T Routzahn
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Christopher D Sibley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
2
|
Zheng R, Xue Z, You M. Optogenetic Tools for Regulating RNA Metabolism and Functions. Chembiochem 2024; 25:e202400615. [PMID: 39316432 DOI: 10.1002/cbic.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
RNA molecules play a vital role in linking genetic information with various cellular processes. In recent years, a variety of optogenetic tools have been engineered for regulating cellular RNA metabolism and functions. These highly desirable tools can offer non-intrusive control with spatial precision, remote operation, and biocompatibility. Here, we would like to review these currently available approaches that can regulate RNAs with light: from non-genetically encodable chemically modified oligonucleotides to genetically encoded RNA aptamers that recognize photosensitive small-molecule or protein ligands. Some key applications of these optogenetic tools will also be highlighted to illustrate how they have been used for regulating all aspects of the RNA life cycle: from RNA synthesis, maturation, modification, and translation to their degradation, localization, and phase separation control. Some current challenges and potential practical utilizations of these RNA optogenetic tools will also be discussed.
Collapse
Affiliation(s)
- Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhaolin Xue
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Soemawisastra N, Okamura H, Abdelhady AM, Onizuka K, Ozawa M, Nagatsugi F. Uracil-Selective Cross-Linking in RNA and Inhibition of miRNA Function by 2-Amino-6-vinyl-7-deazapurine Deoxynucleosides. Chembiochem 2024; 25:e202400417. [PMID: 38923227 DOI: 10.1002/cbic.202400417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
MicroRNAs (miRNAs) regulate gene expression through RNA interference. Consequently, miRNA inhibitors, such as anti-miRNA oligonucleotides (AMOs), have attracted attention for treating miRNA overexpression. To achieve efficient inhibition, we developed 2-amino-6-vinylpurine (AVP) nucleosides that form covalent bonds with uridine counterparts in RNA. We demonstrated that mRNA cross-linked with AVP-conjugated antisense oligonucleotides with AVP were protected from gene silencing by exogenous miRNA. However, endogenous miRNA function could not be inhibited in cells, probably because of slow cross-linking kinetics. We recently developed ADpVP, an AVP derivative bearing a 7-propynyl group - which boasts faster reaction rate than the original AVP. Here, we synthesized dADpVP - a deoxy analog of ADpVP - through a simplified synthesis protocol. Evaluation of the cross-linking reaction revealed that the reaction kinetics of dADpVP were comparable to those of ADpVP. In addition, structural analysis of the cross-linked adduct discovered N3 linkage against uridine. Incorporating dADpVP into two types of miRNA inhibitors revealed a marginal impact on AMO efficacy yet improved the performance of target site blockers. These results indicate the potential of cross-linking nucleosides for indirect miRNA function inhibition.
Collapse
Affiliation(s)
- Nadya Soemawisastra
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Mamiko Ozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
4
|
Onizuka K, Yamano Y, Abdelhady AM, Nagatsugi F. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Org Biomol Chem 2022; 20:4699-4708. [PMID: 35622064 DOI: 10.1039/d2ob00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Abdelhady AM, Onizuka K, Ishida K, Yajima S, Mano E, Nagatsugi F. Rapid Alkene-Alkene Photo-Cross-Linking on the Base-Flipping-Out Field in Duplex DNA. J Org Chem 2022; 87:2267-2276. [PMID: 34978198 DOI: 10.1021/acs.joc.1c01498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific chemical reactions by enzymes acting on a nucleobase are realized by flipping the target base out of the helix. Similarly, artificial oligodeoxynucleotides (ODNs) can also induce the base flipping and a specific chemical reaction. We now report an easily prepared and unique structure-providing photo-cross-linking reaction by taking advantage of the base-flipping-out field formed by alkene-type base-flipping-inducing artificial bases. Two 3-arylethenyl-5-methyl-2-pyridone nucleosides with the Ph or An group were synthesized and incorporated into the ODNs. We found that the two Ph derivatives provided the cross-linked product in a high yield only by a 10 s photoirradiation when their alkenes overlap each other in the duplex DNA. The highly efficient reaction enabled forming a cross-linked product even when using the duplex with a low Tm value.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kei Ishida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Sayaka Yajima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
7
|
Fujimoto K, Hirano A, Watanabe Y, Shimabara A, Nakamura S. The Inhibition Effect of Photo-Cross-Linking between Probes in Photo-Induced Double Duplex Invasion DNA. Chembiochem 2021; 22:3402-3405. [PMID: 34643012 DOI: 10.1002/cbic.202100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Double duplex invasion (DDI) DNA is a useful antigene method that inhibits expression of genomic DNA. We succeeded in performing photoinduced-DDI (pDDI) using ultrafast photo-cross-linking. 5-Cyanouracil (CN U) has been used in pDDI to inhibit photo-cross-linking between probes, but its importance has not been clarified. Therefore, in this study, we evaluated the effect of spacer (S) and d-spacer (dS) that exhibit photo-cross-linking ability similar to that of CN U. CN U exhibited the highest pDDI efficiency, and S, dS, and T were not very different. The photo-cross-linking inhibitory effect was better with S and dS than with thymidine (T). Conversely, the thermal stability was significantly lower with S and dS than with T. The results suggest that the pDDI efficiency is determined by the balance between the photo-cross-linking inhibitory effect and the thermal stability, which is the introduction efficiency for double-stranded DNA. Therefore, CN U, which has a photo-cross-linking inhibitory effect and a high Tm value, showed the highest inhibitory efficiency.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ayumu Hirano
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ami Shimabara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| |
Collapse
|
8
|
Abdelhady AM, Hirano Y, Onizuka K, Okamura H, Komatsu Y, Nagatsugi F. Synthesis of crosslinked 2'-OMe RNA duplexes and their application for effective inhibition of miRNA function. Bioorg Med Chem Lett 2021; 48:128257. [PMID: 34246752 DOI: 10.1016/j.bmcl.2021.128257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The interstrand crosslinking of nucleic acids is one of the strategies to create the stable complex between an oligonucleotide and RNA by covalent bond formation. We previously reported that fully 2'-O-methylated (2'-OMe) RNAs having the 2-amino-6-vinylpurine (AVP) exhibited an efficient crosslinking to uracil in the target RNA. In this study, we established a chemical method to efficiently synthesize the crosslinked 2'-OMe RNA duplexes using AVP and prepared the anti-miRNA oligonucleotides (AMOs) containing the antisense targeting miR-21 and crosslinked duplex at the terminal sequences. These AMOs showed a markedly higher anti miRNA activity than that of the commercially-available miR-21 inhibitor which has locked nucleic acid (LNA) residues.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
9
|
Elskens J, Madder A. Crosslinker-modified nucleic acid probes for improved target identification and biomarker detection. RSC Chem Biol 2021; 2:410-422. [PMID: 34458792 PMCID: PMC8341421 DOI: 10.1039/d0cb00236d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding the intricate interaction pattern of nucleic acids with other molecules is essential to gain further insight in biological processes and disease mechanisms. To this end, a multitude of hybridization-based assays have been designed that rely on the non-covalent recognition between complementary nucleic acid sequences. However, the ephemeral nature of these interactions complicates straightforward analysis as low efficiency and specificity are rule rather than exception. By covalently locking nucleic acid interactions by means of a crosslinking agent, the overall efficiency, specificity and selectivity of hybridization-based assays could be increased. In this mini-review we highlight methodologies that exploit the use of crosslinker-modified nucleic acid probes for interstrand nucleic acid crosslinking with the objective to study, detect and identify important targets as well as nucleic acid sequences that can be considered relevant biomarkers. We emphasize on the usefulness and advantages of crosslinking agents and elaborate on the chemistry behind the crosslinking reactions they induce.
Collapse
Affiliation(s)
- Joke Elskens
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| |
Collapse
|
10
|
The effect of 5-substituent in cytosine to the photochemical C to U transition in DNA strand. Bioorg Med Chem Lett 2021; 35:127812. [PMID: 33486052 DOI: 10.1016/j.bmcl.2021.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/05/2021] [Accepted: 01/17/2021] [Indexed: 11/21/2022]
Abstract
Nucleobase editing is a powerful tool in genetic disease therapy. We have reported the photochemical transition of cytosine to uracil using an ultrafast DNA photo-cross-linking. In this study, we used cytosine derivatives such as methylcytosine, hydroxymethylcytosine, and trifluoromethylcytosine to evaluate the effect of 5-position substitution of cytosine on deamination. The conversion of cytosine to uracil was the fastest, and the conversion of trifluoromethylcytosine to trifluoromethyluracil was the slowest. The order was correlated with the hydrophilicity of the double strand containing these cytosine derivatives.
Collapse
|
11
|
Watanabe Y, Fujimoto K. Complete Photochemical Regulation of 8-17 DNAzyme Activity by Using Reversible DNA Photo-crosslinking. Chembiochem 2020; 21:3244-3248. [PMID: 32596920 DOI: 10.1002/cbic.202000227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/28/2020] [Indexed: 12/15/2022]
Abstract
The regulation of DNAzyme activity is an important problem for its in vivo applications. We achieved photochemical regulation of DNAzyme activity by using reversible DNA photo-crosslinking of 3-cyanovinylcarbazole (CNV K). The ODN containing CNV K photo-crosslinked to a pyrimidine base in the complementary strand after a few seconds of photoirradiation, and its photoadduct was split by photoirradiation of another wavelength. The activity of photo-crosslinked DNAzyme with CNV K was completely inhibited (OFF state). In contrast, after 312 nm irradiation, DNAzyme activity was recovered upon addition of a substrate strand (ON state). In addition, the photo-crosslinked DNAzyme is prone to enzymatic digestion by exonuclease. This photochemical OFF to ON switching with reversible DNA photo-crosslinking was regulated at the desired time and position; therefore, it might be possible to use it for in vivo application.
Collapse
Affiliation(s)
- Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
12
|
Nakamura S, Ishino K, Fujimoto K. Photochemical RNA Editing of C to U by Using Ultrafast Reversible RNA Photo-crosslinking in DNA/RNA Duplexes. Chembiochem 2020; 21:3067-3070. [PMID: 32519413 DOI: 10.1002/cbic.202000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/08/2020] [Indexed: 11/09/2022]
Abstract
RNA editing, which is used to edit nucleobases in RNA strands; is more feasible for use in medical applications than DNA editing. We previously reported the photochemical conversion of cytosine to uracil, which required photo-crosslinking, deamination, and photo-splitting. Here, we evaluated the influence of the bases surrounding the target cytosine on the conversion of cytosine to uracil in the RNA strand. The photo-crosslinker 3-carboxyvinylcarbazole(OHV K), which is more hydrophilic than 3-cyanovinylcarbazole(CNV K), 3-carboxyamidevinylcarbazole(NH2V K), and 3-methoxy carbonylvinylcarbazole(OMeV K), induced faster deamination of cytosine. Furthermore, inosine, which forms two hydrogen bonds with cytosine, was the most efficiently paired base for accelerating photochemical RNA editing. Upon evaluation of the conversion from cytosine to uracil in RNA, the use of oligodeoxynucleotides containing OHV K and inosine and the polarity of the bases surrounding the target cytosine were found to be crucial.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kanako Ishino
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
13
|
Fujimoto K, Hashimoto M, Watanabe N, Nakamura S. RNA fluorescence in situ hybridization hybridisation using photo-cross-linkable beacon probes containing pyranocarbazole in living E. coli. Bioorg Med Chem Lett 2019; 29:2173-2177. [DOI: 10.1016/j.bmcl.2019.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
|
14
|
Fujimoto K, Yamaguchi T, Inatsugi T, Takamura M, Ishimaru I, Koto A, Nakamura S. DNA photo-cross-linking using a pyranocarbazole-modified oligodeoxynucleotide with a d-threoninol linker. RSC Adv 2019; 9:30693-30697. [PMID: 35529377 PMCID: PMC9072208 DOI: 10.1039/c9ra06145b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 01/17/2023] Open
Abstract
An alternative more efficient photo-cross-linker having a d-threoninol skeleton instead of the 2′-deoxyribose backbone in pyranocarbazole was investigated to improve the photoreactivity of photo-cross-linkers.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| | - Tsubasa Yamaguchi
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| | - Takahiro Inatsugi
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Masahiko Takamura
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Isao Ishimaru
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Ayako Koto
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Shigetaka Nakamura
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| |
Collapse
|