1
|
Lim S, Kim D, Kim HJ, Jang H, Park S, Kim E. Synergistic enhancement of luminescence and ferroelectricity driven by ( Z)-clipping of a tetraphenylethene. MATERIALS HORIZONS 2025. [PMID: 40116693 DOI: 10.1039/d4mh01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synergistic enhancement of luminescence and ferroelectricity (SELF) was explored in a (Z)-isomer of tetraphenylethene derivatives containing two clipping units in (Z)-configuration (TPC2-(Z)). TPC2-(Z) was synthesized utilizing a 'body core' precursor, which exclusively afforded (Z)-configuration. High-resolution transmission electron microscopy measurements indicated that TPC2-(Z) formed a layered morphology in film, with well-ordered crystalline structures, which was ascribed to the (Z)-clipped self-assembled structures. The film exhibited good photoluminescence performances with 45.6% quantum yield. Simultaneously, the film exhibited high ferroelectricity as inferred from high remnant polarization (Pr = 2.54 μC cm-2) and saturated polarization (3.56 μC cm-2) along with a longitudinal piezoelectric coefficient (d33 = -23.8 pm V-1), indicating that TPC2-(Z) exhibits excellent SELF. Owing to its fluorescence and thermal stability, we fabricated light-emitting electrochemical cells (LEC) that exhibited maximum 890 cd m-2 at Von of 3.9 V. This was more than 40% enhanced performance compared to that of the (E)/(Z) mixture. A new self-powered, stimuli-sensitive electroluminescent device was demonstrated with TPC2-(Z), where the piezoelectrically tunable LECs effectively 'switched on' luminescence, showing 120-fold increased brightness after 254 bending at 1 Hz, compared to the 'off' state without bending. These results underscore that Z-clipping is an effective method for enhancing SELF and could create new self-powered, stimuli-sensitive electroluminescent devices.
Collapse
Affiliation(s)
- Sewon Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| | - Donghwan Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| | - Hee Jung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| | - Hwandong Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| | - Sienoh Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
2
|
Zeng L, Zhang Y, Hu M, He DL, Ouyang XH, Li JH. Divergent Synthesis of ( E)- and ( Z)-Alkenones via Photoredox C(sp 3)-H Alkenylation-Dehydrogenation of o-Iodoarylalkanols with Alkynes. Org Lett 2024; 26:10096-10101. [PMID: 39546467 DOI: 10.1021/acs.orglett.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A photoredox C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with terminal alkynes for the synthesis of (E)- and (Z)-quaternary carbon center-containing pent-4-en-1-ones is described. The stereoselectivity depends on the utilization of alkynes and photocatalysts. While using an organic photocatalyst like 4-DPAIPN manipulates the C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with arylalkynes to assemble (E)-pent-4-en-1-ones, in the case of an Ir potocatalyst such as Ir(ppy)2(dtbbpy)PF6 the reaction with arylalkynes delivers (Z)-pent-4-en-1-ones. For alkylalkynes, the reaction furnishes (E)-pent-4-en-1-ones exclusively in the presence of 4-DPAIPN or Ir(ppy)2(dtbbpy)PF6.
Collapse
Affiliation(s)
- Liang Zeng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Hui Ouyang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Niranjan R, Prasad GD, Achankunju S, Arockiaraj M, Velumani K, Nachimuthu K, Sundramoorthy AK, Neogi I, Nallasivam JL, Rajeshkumar V, Mahadevegowda SH. Multicomponent Reaction Based Tolyl-substituted and Pyrene-Pyridine Conjugated Isomeric Ratiometric Fluorescent Probes: A Comparative Investigation of Photophysical and Hg(II)-Sensing Behaviors. J Fluoresc 2024; 34:2613-2628. [PMID: 37864613 DOI: 10.1007/s10895-023-03467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Herein, the synthesis of pyrene conjugated 2,6-di-ortho-tolylpyridine and 2,6-di-para-tolylpyridine structural isomers were achieved efficiently through multicomponent Chichibabin pyridine synthesis reaction. The DFT, TD-DFT and experimental investigations were carried out to investigate the photophysical behaviors of the synthesized novel pyrene-pyridine based isomeric probes. Our studies revealed that, due to the continuous conjugation of the pyrene, pyridine and tolyl moieties, the dihedral angles of the trisubstituents on the central pyridine moiety significantly influences the photophysical properties of the synthesized novel pyrene based fluorescent probes. Further, we have comparatively investigated the sensing behaviors of the synthesized tolyl-substituted isomeric ratiometric fluorescent probes with metal ions, our studies reveals that both the ortho and para tolyl ratiometric fluorescent probes have distinct photoemissive properties in selectively sensing of Hg2+ ions. Our studies indicates that, the para-tolyl substituted isomer displays more red-shift in wavelength of emission band compared to its ortho isomer analogue during ratiometric fluorescent specific detection of Hg2+ ions.
Collapse
Affiliation(s)
- Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Simi Achankunju
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Kotteswaran Velumani
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ishita Neogi
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Jothi L Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
4
|
Jiang T, Wang Z, Yu W, Wang J, Yu S, Bao X, Wei B, Xuan Q. Mix-Key: graph mixup with key structures for molecular property prediction. Brief Bioinform 2024; 25:bbae165. [PMID: 38706318 PMCID: PMC11070654 DOI: 10.1093/bib/bbae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Molecular property prediction faces the challenge of limited labeled data as it necessitates a series of specialized experiments to annotate target molecules. Data augmentation techniques can effectively address the issue of data scarcity. In recent years, Mixup has achieved significant success in traditional domains such as image processing. However, its application in molecular property prediction is relatively limited due to the irregular, non-Euclidean nature of graphs and the fact that minor variations in molecular structures can lead to alterations in their properties. To address these challenges, we propose a novel data augmentation method called Mix-Key tailored for molecular property prediction. Mix-Key aims to capture crucial features of molecular graphs, focusing separately on the molecular scaffolds and functional groups. By generating isomers that are relatively invariant to the scaffolds or functional groups, we effectively preserve the core information of molecules. Additionally, to capture interactive information between the scaffolds and functional groups while ensuring correlation between the original and augmented graphs, we introduce molecular fingerprint similarity and node similarity. Through these steps, Mix-Key determines the mixup ratio between the original graph and two isomers, thus generating more informative augmented molecular graphs. We extensively validate our approach on molecular datasets of different scales with several Graph Neural Network architectures. The results demonstrate that Mix-Key consistently outperforms other data augmentation methods in enhancing molecular property prediction on several datasets.
Collapse
Affiliation(s)
- Tianyi Jiang
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Zeyu Wang
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Wenchao Yu
- the College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jinhuan Wang
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Shanqing Yu
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Xiaoze Bao
- the College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Bin Wei
- the College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Qi Xuan
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| |
Collapse
|
5
|
Conen P, Nickisch R, Meier MAR. Synthesis of highly substituted alkenes by sulfur-mediated olefination of N-tosylhydrazones. Commun Chem 2023; 6:255. [PMID: 37980378 PMCID: PMC10657425 DOI: 10.1038/s42004-023-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Tetraphenylethylenes (TPEs) are well-known for their aggregation-induced emission properties. The synthesis of TPE derivatives, as well as other highly substituted olefins, generally requires the use of hazardous reagents, such as metalorganic compounds, to overcome the high activation energies caused by the sterically congested double bond. Herein, we present an efficient and metal-free procedure for the synthesis of tetraarylethylenes via alkylidene-homocoupling of N-tosylhydrazones, derived from readily available benzophenones, in excellent yields. The method relies only on cheap and benign additives, i.e. elemental sulfur and potassium carbonate, and easily competes with other established procedures in terms of scope, yield and practicability. A mechanistic study revealed a diazo compound, a thioketone and a thiirane as key intermediates in the pathway of the reaction. Based on this, a modified method, which allows for selective alkylidene-cross-coupling, generating a broader scope of tri- and tetrasubstituted olefins in good yields, is showcased as well.
Collapse
Affiliation(s)
- Peter Conen
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Roman Nickisch
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Biesen L, Müller TJJ. Aroyl-S,N-Ketene Acetals: Luminous Renaissance of a Class of Heterocyclic Compounds. Chemistry 2023; 29:e202302067. [PMID: 37638792 DOI: 10.1002/chem.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Aroyl-S,N-ketene acetals represent a peculiar class of heterocyclic merocyanines, compounds bearing pronounced and rather short dipoles with great push-pull characteristics that define their rich properties. They are accessible via a wide array of synthetic concepts and procedures, ranging from addition-elimination and condensation procedures up to rearrangement and metal-mediated reactions. With our work from 2020, aroyl-S,N-ketene acetals have been identified as powerful and promising dyes with pronounced and vastly tunable solid-state emission and aggregation-induced emission properties. One characteristic trademark of this class of dye molecules is the level of control that could be exerted, and which was thoroughly explored. Based on these results, the field was opened to extend the system to bi- and multichromophoric systems by the full toolkit of synthetic organic chemistry thus giving access to even more exciting properties and manifolded substance libraries capitalizing on the AIE properties. This review aims at outlining the reaction-based principles that allow for a swift and facile access to aroyl-S,N-ketene acetals, their methodical and structural evolution and the plethora of fluorescence and aggregation properties.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Cai M, Zheng X, Luo F, Zheng L, Cai Z. One-dimensional coordinated polymers of tetraphenylethene pyridine and copper-iodide for fluorescence detection of nitroaromatic explosives. LUMINESCENCE 2023; 38:1904-1911. [PMID: 37559555 DOI: 10.1002/bio.4576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
The spatial arrangement of molecules plays a crucial role in determining the macroscopic properties of functional materials. Coordinated polymers (CPs) formed by self-assembly of organic isomeric ligands and metals offer unique performance characteristics. In this study, we present the investigation of a one-dimensional CP, named CIT-E, composed of tetraphenylethene pyridine derivative (TPE-2by-2-E) ligands and copper iodide. The resulting CP exhibits a one-dimensional bead chain structure with exceptional thermal and chemical stability. By leveraging the competitive absorption between CIT-E and the explosive analog 2,4-dinitroaniline, we achieve detection of the explosive through changes in the absorption intensity of the excitation light source and subsequent fluorescence response. The CP demonstrates high selectivity and anti-interference ability in detecting 2,4-dinitroaniline in aqueous solution, with a detection linear range of 0.1 to 300 μM and a detection limit of 0.05 μM, surpassing the national third-level emission standard. These findings highlight the potential of CP CIT-E as a promising material for the detection of explosive nitroaromatic compounds.
Collapse
Affiliation(s)
- Minjuan Cai
- College of Chemistry, Chemical Engineering and Environment; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China
| | - Xuan Zheng
- College of Chemistry, Chemical Engineering and Environment; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China
| | - Fenqiang Luo
- College of Chemical Engineering; Collaborative Innovation Center of Fine Chemicals in Fujian Province, Zhangzhou Institute of Technology, Zhangzhou, China
| | - Liyan Zheng
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, China
| |
Collapse
|
8
|
Wang H, Yang J, Zheng X. Elucidation of the key role of isomerization in the self-assembly and luminescence properties of AIEgens. Phys Chem Chem Phys 2023; 25:14387-14399. [PMID: 37183990 DOI: 10.1039/d3cp00797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to the hierarchical nature of the self-assembly process, it is effective to control assembled nanostructures by tuning the spatial configurations of the building blocks through Z-/E-isomerization. A pair of AIE stereoisomers termed (Z)-/(E)-TPE-UPy was reported with different self-assembly mechanisms, morphologies and luminescence properties. In this study, we present a multiscale modeling combining MD simulations, hybrid QM/MM calculations and the PCM model, to systematically clarify the molecular configuration-molecular assembly-photophysical property relationship of (Z)-/(E)-TPE-UPy. Our study shows that (Z)-TPE-UPy follows a concentration-dependent ring-chain polymerization mechanism. At low concentration, (Z)-TPE-UPy tends to form ring-like (Z)-close-dimers with all H-bond sites occupied, while at high concentration, the H-bond backbone in the chain-like structures is more planar and stronger, making the zig-zag chain-like conformations more favorable. For the (E)-isomer, the H-bond backbone is quite planar and rigid, which makes it linearly elongate one-by-one at the whole range of concentrations via the isodesmic polymerization mechanism. (Z)-TPE-UPy oligomers exhibit large flexibility and diverse conformations, leading to sharply enhanced viscosity at high concentration in experiments. Moreover, the fluorescence spectrum of (Z)-/(E)-TPE-UPy aggregate is conformation-dependent and the enhanced emission in the aggregated state is attributed to the restriction of the low-frequency intramolecular rotations of the phenyl rings and the distortion of the CC plane, as well as the reduction of electron-vibration couplings. Our work not only offers valuable insights into the key role of stereoisomerism in assembled morphologies and luminescence properties, but also provides a theoretical basis for the rational design of new building blocks based on stereoisomers.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junfang Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, 510640, China
| |
Collapse
|
9
|
Chen Y, Li A, Li X, Tu L, Xie Y, Xu S, Li Z. Multi-Stimuli-Responsive Amphiphilic Pyridinium Salt and Its Application in the Visualization of Level 3 Details in Latent Fingerprints. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211917. [PMID: 36870363 DOI: 10.1002/adma.202211917] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Indexed: 05/19/2023]
Abstract
Organic luminescent materials that can simultaneously achieve multimode mechanochromism and its water-vapor-induced recovery are desirable for practical applications but rarely reported. Herein, an amphiphilic compound, 4-(9H-carbazol-9-yl)-1-(2-hydroxyethyl)pyridin-1-ium bromide (CPAB), is designed by integrating a lipophilic aromatic unit and hydrophilic end in the molecular architecture. Self-recovered mechanochromism from brown to cyan is observed upon mechanical grinding in air. Comprehensive research by X-ray diffraction, infrared spectroscopy, and single-crystal analysis reveals that the photoluminescence switch originates from the variation in intermolecular hydrogen bonds and molecular packing mode. The amphiphilic nature of CPAB allows water molecules to enter the crystalline lattice, forming two polymorphs of the crystalline phase, namely CPAB-D and CPAB-W. The hydrosoluble CPAB exhibits excellent capability in probing the level 3 details of fingerprints because its lipophilic part can target the fatty acid residues of fingerprints, leading to strong aggregation-induced fluorescence. The research may inspire the design of latent fingerprint developers and application in forensics/anti-counterfeiting.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Huang Y, Zhan C, Yang Y, Wang L, Zhong H, Yu Y, Zhang X, Li C, Jin Y, Zhang G, Zhao R, Zhang D. Tuning Proapoptotic Activity of a Phosphoric‐Acid‐Tethered Tetraphenylethene by Visible‐Light‐Triggered Isomerization and Switchable Protein Interactions for Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202208378. [DOI: 10.1002/anie.202208378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Chi Zhan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Lingna Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Xi‐Sha Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Huang Y, Zhan C, Yang Y, Wang L, Zhong H, Yu Y, Zhang X, Li C, Jin Y, Zhang G, Zhao R, Zhang D. Tuning Proapoptotic Activity of a Phosphoric‐Acid‐Tethered Tetraphenylethene by Visible‐Light‐Triggered Isomerization and Switchable Protein Interactions for Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Chi Zhan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Lingna Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Xi‐Sha Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
ACQ-to-AIE Transformation by Regioisomerization of Rofecoxib Derivatives for Developing Novel Mechanochromic and Acidochromic Materials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Ma J, Han N, Yu H, Li J, Shi J, Wang S, Zhang H, Wang M. Multi-Decker Emissive Supramolecular Architectures Based on Shape-Complementary Ligands Pair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202167. [PMID: 35638477 DOI: 10.1002/smll.202202167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Dye aggregates have attracted a great deal of attention due to their widespread applications in organic light-emitting devices, light-harvesting systems, etc. However, the strategies to precisely control chromophores with specific spatial arrangements still remain a great challenge. In this work, a series of double- and triple-decker supramolecular complexes are successfully constructed by coordination-driven self-assembly of carefully designed shape-complementary ligands, one claw-like tetraphenylethylene (TPE)-based host ligand and three tetratopic or ditopic guest ligands. The spatial configurations of these assemblies (one double-decker and three "S-shaped" or "X-shaped" triple-decker structures) depend on the angles of these TPE-derived ligands. Notably, the three triple-decker structures are geometric isomers. Furthermore, photophysical studies show that these complexes exhibit different ratios of radiative (kr ) and non-radiative (knr ) rate constant due to the different spatial arrangements of TPE moieties. This study provides not only a unique strategy for the construction of multi-stacks with specific spatial arrangement, but also a promising platform for investigating the aggregation behavior of fluorescent chromophores.
Collapse
Affiliation(s)
- Jianjun Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shaozhi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
14
|
Nishiuchi T, Aibara S, Yamakado T, Kimura R, Saito S, Sato H, Kubo T. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs. Chemistry 2022; 28:e202200286. [PMID: 35333427 DOI: 10.1002/chem.202200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Yamakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Ryo Kimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Lei SN, Cong H. Fluorescence detection of perfluorooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Chen Y, Xie Y, Li Z. Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. J Phys Chem Lett 2022; 13:1652-1659. [PMID: 35147440 DOI: 10.1021/acs.jpclett.2c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pure organic room-temperature phosphorescence (RTP) has attracted wide interest due to its unique advantages and promising applications. However, it is still challenging to develop efficient RTP through precise molecular design. In this work, RTP is observed from two simple aromatic acids, nicotinic acid (NA) and isonicotinic acid (INA), in the crystal state. Single crystal structure analysis indicates that an intense hydrogen bond between the pyridine nitrogen atom and the carboxyl group results in zigzag and linear molecular packing modes in NA and INA crystal. From theoretical calculations, the hydrogen bond can effectively promote the intersystem crossing process and stabilize triplet exciton. The identical molecular orientations in the molecular array contribute to the larger dipole moment of INA as compared to that of NA, which should be responsible for the red-shifted photoluminescence and RTP of INA. When the hydrogen bond is destructed by grinding or deprotonation, the RTP decreases sharply, further confirming the crucial role of the hydrogen bond on RTP.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Liu W, Wang X, Li R, Sun S, Li Z, Hao J, Lin B, Jiang H, Xie L. A Precise Molecular Design to Achieve ACQ‐to‐AIE Transformation for Developing New Mechanochromic Material by Regio‐Isomerization Strategy**. ChemistrySelect 2022. [DOI: 10.1002/slct.202104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Liu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products Fujian Institute of Microbiology Fuzhou Fujian 350007 PR China
- The School of Pharmacy Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Xinli Wang
- Department of Medical Oncology Fujian Medical University Union Hospital Fuzhou Fujian 350007 PR China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 PR China
| | - Shitao Sun
- Department of Medicinal Chemistry School of Pharmaceutical Engineering Shenyang Pharmaceutical University Shenyang Liaoning 110016 PR China
| | - Zhenli Li
- Department of Medicinal Chemistry School of Pharmaceutical Engineering Shenyang Pharmaceutical University Shenyang Liaoning 110016 PR China
| | - Jinle Hao
- Department of Medicinal Chemistry School of Pharmaceutical Engineering Shenyang Pharmaceutical University Shenyang Liaoning 110016 PR China
| | - Bin Lin
- Department of Medicinal Chemistry School of Pharmaceutical Engineering Shenyang Pharmaceutical University Shenyang Liaoning 110016 PR China
| | - Hong Jiang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products Fujian Institute of Microbiology Fuzhou Fujian 350007 PR China
- The School of Pharmacy Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products Fujian Institute of Microbiology Fuzhou Fujian 350007 PR China
| |
Collapse
|
18
|
CuOx/OMS-2 catalyzed synthesis of 4,5-dicyano-1H-imidazoles moiety: Directly access to d-A system for AIE-active mechanofluorochromic materials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Li X, Zhuang Y, Ran Q, Liu X. Oxidative evolution of Z/ E-diaminotetraphenylethylene. Phys Chem Chem Phys 2022; 24:1960-1964. [PMID: 35037672 DOI: 10.1039/d1cp05303e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that Z/E-diaminotetraphenylethylene (Z/E-2NH2-TPE) molecules suffer primarily from oxidative evolution rather than recognized isomerization. The oxide is separated and its structure is deciphered by single crystal X-ray diffraction. The oxidative evolution accompanying the rearrangement is explained through quantum theoretical calculation.
Collapse
Affiliation(s)
- Xin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qichao Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
20
|
Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021; 10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Indexed: 12/15/2022]
Abstract
In the field of tumor imaging and therapy, the aggregation-caused quenching (ACQ) effect of fluorescent dyes at high concentration is a great challenge. In this regard, the aggregation-induced emission luminogens (AIEgens) show great potential, since AIEgens effectively overcome the ACQ effect and have better fluorescence quantum yield, photobleaching resistance, and photosensitivity. Polyethylene glycol (PEG)-polymer is the most commonly used carrier to prepare nanoparticles (NPs). The advantage of PEGylation is that it can greatly prolong the metabolic half-life and reduce immunogenicity and toxicity. Considering that the hydrophobicity of most AIEgens hinders their application in organisms, the use of PEG-polymer encapsulation is an effective strategy to overcome this obstacle. Importantly, bioactive functional groups can be modified on PEG-polymers to enhance the biological effect of NPs. The combination of powerful AIEgens and PEG-polymers provides a new strategy for tumor imaging and therapy, which is promising for clinical application.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| |
Collapse
|
21
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
22
|
Hu H, Hu Y, Xia L, Li G. Tetraphenylethene Functionalized Polyhedral Oligomeric Silsesquioxane Fluorescent Probe for Rapid and Selective Trifluralin Sensing in Vegetables and Fruits. Chem Asian J 2021; 16:3970-3977. [PMID: 34606687 DOI: 10.1002/asia.202101024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Indexed: 01/08/2023]
Abstract
A novel fluorescent probe was designed and synthesized from tetraphenylethene (TPE) and polyhedral oligomeric silsesquioxanes (POSS) via Heck-palladium catalyzed cross-coupling reaction. The as-synthesized TPE functionalized probe performed good solvent stability and selectively preconcentration capability towards target analyte due to its stable structure and the adsorption property. The morphology as well as the physical and chemical properties of the POSS@TPE were carefully characterized. The POSS@TPE was employed to develop an effective fluorescent probe for trifluralin, with a response range of 0.1-80 mg/kg and a detection limit of 0.102 mg/kg. The mixed mechanisms of inner-filter effect (IFE) and photoinduced electron transfer (PET) explain the selectivity of POSS@TPE. Rapid detection for trifluralin in tomato and celery has been achieved with recoveries between 99.4-120.7% (RSD≤3.4%), and the results were verified compared with GC-MS method.
Collapse
Affiliation(s)
- Hongzhi Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
23
|
Yu X, Meng Y, Zhang H, Guo J, Wang S, Li H, Hu J, Li MH. Trans/ cis-stereoisomers of triterpenoid-substituted tetraphenylethene: aggregation-induced emission, aggregate morphology, and mechano-chromism. NANOSCALE 2021; 13:15257-15266. [PMID: 34472552 DOI: 10.1039/d1nr04353f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trans/cis stereoisomers with multiple functionalities play an important role in chemistry and materials science. In this work, two pure stereoisomers (trans- and cis-TPE-2GA) of the tetraphenylethene (TPE) derivatives bi-substituted by a bio-resourced rigid triterpenoid and glycyrrhetinic acid (GA) were synthesized and characterized by 1D and 2D NMR, single crystal analysis, and HR-MS. Both trans- and cis-TPE-2GA are thermally stable even on heating at 160 °C for 30 min, whereas they can undergo trans-to-cis and cis-to-trans photoisomerization under similar UV illumination. The introduction of triterpenoid units endowed isomers with different aggregation-induced emission (AIE) and self-assembly properties and distinct crystallinity. Trans- and cis-TPE-2GA exhibit different evolution of the fluorescent intensity in water/acetone mixture with the increase in the water fraction, which are closely related to the different evolution of the aggregate morphology, from nanorods to nanospheres for trans-TPE-2GA, while from twisted ribbons, to nanotubes and nanospheres for cis-TPE-2GA. In the solid state, the mechano-chromic properties are shown by cis-TPE-2GA, while no mechano-chromic effect is observed for trans-TPE-2GA under the same grinding conditions because of their distinct crystallinity. Finally, theoretical calculation and photophysical study demonstrate that despite both isomers being assigned to the charge transfer state emission, cis-TPE-2GA has a slightly lower energy gap, a higher quantum yield, and a longer lifetime in comparison with trans-TPE-2GA, which explained their difference in the fluorescence and mechano-chromic properties. This work may improve the understanding of the TPE-based trans and cis stereoisomers, which will be beneficial in the design of novel TPE-based functional materials.
Collapse
Affiliation(s)
- Xia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuzhang Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Junbo Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shixian Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min-Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de chimie, Paris 75005, France.
| |
Collapse
|
24
|
Docker A, Shang X, Yuan D, Kuhn H, Zhang Z, Davis JJ, Beer PD, Langton MJ. Halogen Bonding Tetraphenylethene Anion Receptors: Anion-Induced Emissive Aggregates and Photoswitchable Recognition. Angew Chem Int Ed Engl 2021; 60:19442-19450. [PMID: 34185375 PMCID: PMC8456845 DOI: 10.1002/anie.202107748] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/17/2022]
Abstract
A series of tetraphenylethene (TPE) derivatives functionalized with highly potent electron-deficient perfluoroaryl iodo-triazole halogen bond (XB) donors for anion recognition are reported. 1 H NMR titration experiments, fluorescence spectroscopy, dynamic light scattering measurements, TEM imaging and X-ray crystal structure analysis reveal that the tetra-substituted halogen bonding receptor forms luminescent nanoscale aggregates, the formation of which is driven by XB-mediated anion coordination. This anion-coordination-induced aggregation effect serves as a powerful sensory mechanism, capable of luminescence chloride sensing at parts per billion concentration. Furthermore, the doubly substituted geometric isomers act as unprecedented photoswitchable XB donor anion receptors, where the composition of the photostationary state can be modulated by the presence of a coordinating halide anion.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Xiaobo Shang
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Daohe Yuan
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Heike Kuhn
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Jason J. Davis
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Matthew J. Langton
- Department of Chemistry University of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
25
|
Liu XX, Li Y, Li X, Hahn FE, Han YF. Photoinduced E to Z isomerization of tetraphenylethylene derivatives within organometallic supramolecular assemblies. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1041-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractIsolation of E-1,2-bis(4-bromophenyl)-1,2-diphenyl-ethylene from the E/Z isomer mixture obtained by a McMurry coupling reaction and reaction of this isomer with imidazole followed by N-alkylation with nBuBr and anion exchange yielded the bisimidazolium tetraphenylethylene (TPE) derivative H2-E-1(PF6)2. The reaction of H2-E-1(PF6)2 with Ag2O yielded the di-nuclear metallarectangle [Ag2(E-1)2](PF6)2 where the two bis-NHC donors E-1 bridge two silver atoms. Irradiation of [Ag2(E-1)2](PF6)2 leads to E/Z isomerization of the di-NHC ligand and formation of Z-1 in the mononuclear complex [Ag(Z-1)]PF6. Demetallation of the di-NHC ligand with NH4Cl/NH4PF6 yielded bisimidazolium salt H2-Z-1(PF6)2. The unique isomerization of the E-TPE derivative into its Z-isomer via metal complex formation/irradiation/demetallation cannot be achieved by irradiation of the individual imidazolium salt. The emissive properties of the TPE complexes [Ag2(E-1)2](PF6)2 and [Ag(Z-1)]PF6 have been investigated.
Collapse
|
26
|
Li X, Xie Y, Li Z. Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chem Asian J 2021; 16:2817-2829. [PMID: 34378344 DOI: 10.1002/asia.202100784] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Organic light-emitting diodes (OLED) have attracted increasing attention due to their excellent properties, such as self-luminosity, high color gamut and flexibility, and potential applications in display, wearable devices and lighting. The emitters are the most important composition in OLEDs, mainly classified into fluorescent compounds (first generation), metal phosphorescent complexes (second generation), and thermally activated delayed fluorescence (TADF) materials (third generation). In this review, we summarize the advances of novel emitters of organic metal complexes in the last decade, focusing on coinage metals (Cu, Ag, and Au) and non-precious metals (Al, Zn, W, and alkali metal). Also, the design strategy of d10 and Au(III) complexes was discussed. We aim to provide guidance for exploring efficient metal complexes beyond traditional phosphorescent complexes.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China.,Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, P. R. China.,Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Docker A, Shang X, Yuan D, Kuhn H, Zhang Z, Davis JJ, Beer PD, Langton MJ. Halogen Bonding Tetraphenylethene Anion Receptors: Anion‐Induced Emissive Aggregates and Photoswitchable Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew Docker
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Xiaobo Shang
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Daohe Yuan
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Heike Kuhn
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Zongyao Zhang
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Jason J. Davis
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Paul D. Beer
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Matthew J. Langton
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
28
|
Chen K, He P, Wang Z, Tang BZ. A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. ACS NANO 2021; 15:7735-7743. [PMID: 33856778 DOI: 10.1021/acsnano.1c01577] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The utilization of photochemical reaction channel based on radical process is rarely reported, which might be a very efficient and feasible strategy for improving generation of Type I reactive oxygen species (ROS). In this work, a double ionic-type aggregation-induced emission luminogen (AIEgen) of TIdBO was developed as a photosensitizer, of which the potential photocyclization characteristic involving an electron-transfer process had a positive effect on Type I ROS generation in aggregates under continuous light irradiation. Its noticeable photodynamic therapy (PDT) performance and self-monitoring of PDT process by the relationship between cellular morphology change and fluorescence intensity enhancement were achieved. In addition, it showed a good killing ability to microbes and specific interactions with microbes but not cells by regulating the incubation time. These intriguing results reveal a feasible design principle for the implementation of efficient PS preparation in clinical treatment under hypoxic conditions.
Collapse
Affiliation(s)
- Kongqi Chen
- AIE Institute, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Ping He
- AIE Institute, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- AIE Institute, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
29
|
Rodrigues ACB, Seixas de Melo JS. Aggregation-Induced Emission: From Small Molecules to Polymers-Historical Background, Mechanisms and Photophysics. Top Curr Chem (Cham) 2021; 379:15. [PMID: 33725207 DOI: 10.1007/s41061-021-00327-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.
Collapse
Affiliation(s)
- Ana Clara B Rodrigues
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal
| | - J Sérgio Seixas de Melo
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
30
|
Chen H, Fan Y, Yu X, Semetey V, Trépout S, Li MH. Light-Gated Nano-Porous Capsules from Stereoisomer-Directed Self-Assemblies. ACS NANO 2021; 15:884-893. [PMID: 33370534 DOI: 10.1021/acsnano.0c07400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structuring pores into stable membrane and controlling their opening is extremely useful for applications that require nanopores as channels for material exchange and transportation. In this work, nanoporous vesicles with aggregation-induced emission (AIE) properties were developed from the amphiphilic polymer PEG550-TPE-Chol, in which the hydrophobic part is composed of a tetraphenylethene (TPE) group and a cholesterol moiety and the hydrophilic block is a poly(ethylene glycol) (PEG, Mn = 550 Da). Two stereoisomers, trans-PEG550-TPE-Chol and cis-PEG550-TPE-Chol, were successfully synthesized. These thermally stable stereoisomers showed distinct self-assembly behavior in water: trans-PEG550-TPE-Chol formed classical vesicles, while cis-PEG550-TPE-Chol self-assembled into cylindrical micelles. Interestingly, trans/cis mixtures of PEG550-TPE-Chol (trans/cis = 60/40), either naturally synthesized without isomers' separation during the synthesis or intentionally mixed using trans- and cis-isomers, constructed perforated vesicles with nanopores. Moreover, under the illumination of high intensity UV light (365 nm, 15 mW/cm2), the classical vesicles of trans-PEG550-TPE-Chol were perforated by its cis counterparts generated from the trans-cis photoisomerization, while the cylindrical micelles of cis-PEG550-TPE-Chol interweaved to form meshes and nanoporous membranes due to the trans-isomers produced by cis-trans photoisomerization. All of these assemblies in water emitted bright cyan fluorescence under UV light, while their constituent molecules were not fluorescent when solubilized in organic solvent. The AIE fluorescent normal vesicles and nanoporous vesicles may find potential applications in biotechnology as light-gated delivery vehicles and capsules with nanochannels for material exchange.
Collapse
Affiliation(s)
- Hui Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, P.R. China
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris 75231 Cedex 05, France
| | - Yujiao Fan
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris 75231 Cedex 05, France
| | - Xia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, P.R. China
| | - Vincent Semetey
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris 75231 Cedex 05, France
| | - Sylvain Trépout
- Institut Curie, Inserm US43 and CNRS UMS2016, Orsay 91405 Cedex, France
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris 75231 Cedex 05, France
| |
Collapse
|
31
|
García-González MC, Navarro-Huerta A, Rodríguez-Muñoz FC, Vera-Alvízar EG, Vera Ramírez MA, Rodríguez-Hernández J, Rodríguez M, Rodríguez-Molina B. The design of dihalogenated TPE monoboronate complexes as mechanofluorochromic crystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00442e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mechanofluorochromic crystals based on tetraphenylethylene and boronates reversibly change their emission upon grinding, setting the path to develop bistable switches in the future.
Collapse
Affiliation(s)
- Ma. Carmen García-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Armando Navarro-Huerta
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Fanny Chantal Rodríguez-Muñoz
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Estefanía Guadalupe Vera-Alvízar
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Marco A. Vera Ramírez
- Laboratorio de RMN, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, Mexico
| | - Joelis Rodríguez-Hernández
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25294, Mexico
| | - Mario Rodríguez
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, CIO, Apdo., Postal 1-948, 37000 León Gto, Mexico
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| |
Collapse
|
32
|
Qi Q, Jiang S, Qiao Q, Wei J, Xu B, Lu X, Xu Z, Tian W. Direct observation of intramolecular coplanarity regulated polymorph emission of a tetraphenylethene derivative. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Yu W, Zhang H, Yin PA, Zhou F, Wang Z, Wu W, Peng Q, Jiang H, Tang BZ. Restriction of Conformation Transformation in Excited State: An Aggregation-Induced Emission Building Block Based on Stable Exocyclic C=N Group. iScience 2020; 23:101587. [PMID: 33089098 PMCID: PMC7566090 DOI: 10.1016/j.isci.2020.101587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The development of aggregation-induced emission (AIE) building block and deciphering its luminescence mechanism are of great significance. Here a feasible strategy for the construction of AIE unit based on E-Z isomerization (EZI) of exocyclic C=N double bond is proposed. Taking [1,2,4]thiadiazole[4,3-a]pyridine (TZP) derivative as an example, its aryl-substituted derivative (TZPP) shows obvious AIE character. The analysis of spectral data and theoretical calculations indicates that fast structural relaxation of TZPP in the emissive state plays a key role in a low fluorescence quantum yield in dilute solution, which should be caused by the small energy gap between locally excited (LE) state and twisted intramolecular charge transfer state. When in solid state, the bright emission with LE state characteristic reappears due to the large shift barrier of geometry transformation. As a potential building block for AIEgens with special heterocyclic structure, these findings would open up opportunities for developing various functional materials. A new aggregation-induced emission building block A novel AIE mechanism with spectral measurements and theoretical calculations Available starting materials resulting in convenient synthesis and modification A stable exocyclic C=N double bond in heterocycles
Collapse
Affiliation(s)
- Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Han Zhang
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ping-An Yin
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Fan Zhou
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Ben Zhong Tang
- AIE Institute, SCUT-HKUST Joint Research Institute, Guangzhou International Campus, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
34
|
Li MY, Han P, Hu TJ, Wei D, Zhang G, Qin A, Feng CG, Tang BZ, Lin GQ. Suzuki-Miyaura Coupling Enabled by Aryl to Vinyl 1,4-Palladium Migration. iScience 2020; 23:100966. [PMID: 32199292 PMCID: PMC7082552 DOI: 10.1016/j.isci.2020.100966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
The Suzuki-Miyaura coupling is a fundamentally important transformation in modern organic synthesis. The development of new reaction modes for new chemical accessibility and higher synthetic efficiency is still the consistent pursuance in this field. An efficient Suzuki-Miyaura coupling enabled by a controllable 1,4-palladium migration was realized to afford stereodefined multisubstituted olefins and 1,3-dienes. The reaction exhibits remarkable broad substrate scope, excellent functional-group tolerance, versatile conversion with obtained products, and easy scalability. The practicality of this method is highlighted by the aggregation-induced emission feature of the produced olefins and 1,3-dienes, as well as the capability of affording geometric isomer pairs with a marked difference on photoluminescent quantum yield values.
Collapse
Affiliation(s)
- Meng-Yao Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengbo Han
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Tian-Jiao Hu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Wei
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ge Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Chen-Guo Feng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Che W, Gong Y, Tu L, Han M, Li X, Xie Y, Li Z. Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs from benzophenone–borate derivatives. Phys Chem Chem Phys 2020; 22:21445-21452. [DOI: 10.1039/d0cp02881a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The RTP property of polymorphisms present the different emission derive from the same molecule embed in different intermolecular packings.
Collapse
Affiliation(s)
- Weilong Che
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Yanbin Gong
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Mengmeng Han
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Yujun Xie
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
| | - Zhen Li
- Institute of Molecular Aggregation Science
- Tianjin University
- Tianjin
- P. R. China
- Department of Chemistry
| |
Collapse
|
36
|
Roger M, Amro K, Rault-Berthelot J, Quiot M, Van der Lee A, Poriel C, Richeter S, Clément S, Gerbier P. Synthesis, photophysical and electropolymerization properties of thiophene-substituted 2,3-diphenylbuta-1,3-dienes. NEW J CHEM 2020. [DOI: 10.1039/d0nj02382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electropolymerizable diphenylbuta-1,3-diene derivatives with AIE or AEE properties were synthesized allowing low bandgap polymers to be obtained through electropolymerization processes.
Collapse
Affiliation(s)
| | | | | | | | - Arie Van der Lee
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Université de Montpellier
| | - Cyril Poriel
- Univ. Rennes
- CNRS
- ISCR-UMR CNRS 6226
- F-35000 Rennes
- France
| | | | | | | |
Collapse
|
37
|
Liang J, Wei W, Yao H, Shi K, Liu H. A biocomputing platform with electrochemical and fluorescent signal outputs based on multi-sensitive copolymer film electrodes with entrapped Au nanoclusters and tetraphenylethene and electrocatalysis of NADH. Phys Chem Chem Phys 2019; 21:24572-24583. [PMID: 31663551 DOI: 10.1039/c9cp03687c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, poly(N,N'-dimethylaminoethylmethacrylate-co-N-isopropylacrylamide) copolymer films were polymerized on the surface of Au electrodes with a facile one-step method, and Au nanoclusters (AuNCs) and tetraphenylethene (TPE) were synchronously embedded in the films, designated as P(DMA-co-NIPA)/AuNCs/TPE. Ferrocene dicarboxylic acid (FDA), an electroactive probe in solution displayed inverse pH- and SO42--sensitive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) mediated by FDA in solution could substantially amplify the CV response difference between the on and off states. Moreover, the two fluorescence emission (FL) signals from the TPE constituent at 450 nm and AuNCs component at 660 nm in the films also demonstrated SO42-- and pH-sensitive behaviors. Based on the aforementioned results, a 4-input/9-output biomolecular logic circuit was constructed with pH, Na2SO4, FDA and NADH as the inputs, and the CV signals and the FL responses at 450 and 660 nm at different levels as the outputs. Additionally, some functional non-Boolean devices were elaborately designed on an identical platform, including a 1-to-2 decoder, a 2-to-1 encoder, a 1-to-2 demultiplexer and different types of keypad locks. This work combines copolymer films, bioelectrocatalysis, and fluorescence together so that more complicated biocomputing systems could be established. This work may pave a new way to develop advanced and sophisticated biocomputing logic circuits and functional devices in the future.
Collapse
Affiliation(s)
- Jiying Liang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | |
Collapse
|
38
|
Song W, Zhi J, Wang T, Li B, Ni S, Ye Y, Wang JL. Tetrathienylethene-based Positional Isomers with Aggregation-induced Emission Enabling Super Red-shifted Reversible Mechanochromism and Naked-eye Sensing of Hydrazine Vapor. Chem Asian J 2019; 14:3875-3882. [PMID: 31486261 DOI: 10.1002/asia.201901097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/02/2019] [Indexed: 01/22/2023]
Abstract
AIE-active positional isomers, TTE-o-PhCHO, TTE-m-PhCHO and TTE-p-PhCHO, tetrathienylethene (TTE) derivates with peripherally attached ortho-/meta-/para-formyl phenyl groups, were designed and synthesized. The formyl substitution position can effectively modulate their photophysical properties, mechanochromism and fluorescent response to hydrazine. TTE-o-PhCHO and TTE-m-PhCHO exhibit remarkable AIE characteristics, and TTE-p-PhCHO possesses aggregation-induced emission enhancement performance. They all exhibit high contrast mechanochromism, and TTE-m-PhCHO shows larger red-shift (164 nm) than TTE-o-PhCHO (104 nm) and TTE-p-PhCHO (125 nm) due to the more twisted molecular conformation and much looser molecular packing. Moreover, TTE-o-PhCHO with a higher contrast color change can be used as ink-free rewritable paper. In addition, TTE-p-PhCHO, as a turn-on fluorescent probe, can selectively detect hydrazine with significant color changes that are visible by the naked eye . Therefore, the position dependence of groups would be an effective method to modulate the molecular arrangement, as well as develop AIE compounds for mechano-stimuli responsive materials, ink-free rewritable papers and chemosensors.
Collapse
Affiliation(s)
- Wenting Song
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tianyang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shanshan Ni
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanchun Ye
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
39
|
Qin M, Xu Y, Gao H, Han G, Cao R, Guo P, Feng W, Chen L. Tetraphenylethylene@Graphene Oxide with Switchable Fluorescence Triggered by Mixed Solvents for the Application of Repeated Information Encryption and Decryption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35255-35263. [PMID: 31474104 DOI: 10.1021/acsami.9b12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) materials present unique solid-state fluorescence. However, there remains a challenge in the switching of fluorescence quenching/emitting of AIE materials, limiting the application in information encryption. Herein, we report a composite of tetraphenylethylene@graphene oxide (TPE@GO) with switchable microstructure and fluorescence. We choose GO as a fluorescence quencher to control the fluorescence of TPE by controlling the aggregation structure. First, TPE coating with an average thickness of about 31 nm was deposited at the GO layer surface, which is the critical thickness at which the fluorescence can be largely quenched because of the fluorescence resonance energy transfer. After spraying a mixed solvent (good and poor solvents of TPE) on TPE@GO, a blue fluorescence of TPE was emitted during the drying process. During the treatment of mixed solvents, the planar TPE coating was dissolved in THF first and then the TPE molecules aggregated into nanoparticles (an average diameter of 65 nm) in H2O during the volatilization of THF. We found that the fluorescence switching of the composite is closely related to the microstructural change of TPE between planar and granular structures, which can make the upper TPE molecules in and out of the effective quenching region of GO. This composite, along with the treatment method, was used as an invisible ink in repeated information encryption and decryption. Our work not only provides a simple strategy to switch the fluorescence of solid-state fluorescent materials but also demonstrates the potential for obtaining diverse material structures through compound solvent treatment.
Collapse
Affiliation(s)
- Mengmeng Qin
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory for Photoelectric Display Materials and Devices , Tianjin 300384 , China
- Key Laboratory of Photoelectric Display Materials and Devices , Ministry of Education , Tianjin 300384 , P. R. China
| | - Yuxiao Xu
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - H Gao
- School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Guoying Han
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Rong Cao
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Peili Guo
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Wei Feng
- School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , P. R. China
| | - Li Chen
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory for Photoelectric Display Materials and Devices , Tianjin 300384 , China
- Key Laboratory of Photoelectric Display Materials and Devices , Ministry of Education , Tianjin 300384 , P. R. China
| |
Collapse
|