1
|
Ishiwari F, Omine T, Saeki A, Munro K, Buck M, Zharnikov M. Homochiral Carboxylate-Anchored Truxene Tripods: Design, Synthesis, and Monolayer Formation on Ag(111). Chemistry 2025; 31:e202404750. [PMID: 39963079 PMCID: PMC11973864 DOI: 10.1002/chem.202404750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Indexed: 02/22/2025]
Abstract
The design of well-defined assemblies of chiral molecules is a prerequisite for numerous applications, such as chirality-induced spin selectivity (CISS). In this context, tripodal molecular films bear the advantage of better control of molecular orientation and alignment than analogous monopodal systems. To this end, we report on the synthesis and assembly property of C3 chiral syn-5,10,15-truxene triacetic acid. (S,S,S) and (R,R,R) enantiomers were isolated and adsorbed on underpotential deposited Ag(111)/Au/mica both individually and as a racemate. The enantiomers form a densely packed and well-ordered structure (including the azimuthal alignment), even though with small sizes of individual domains. The molecules adsorb predominantly in tripodal configuration, with all three docking groups bound to the substrate as carboxylates in a bidentate fashion. The truxene backbone is then oriented parallel to the substrate surface but the fluorene blades are twisted to some extent. The racemate monolayer turned out to be less densely packed and less well-ordered compared to the films of individual enantiomers, which underlines the fact that uniform chirality is primarily important for molecular ordering of the truxenes. We hope that the designed system will be useful in the context of CISS and stimulate further activities regarding chiral tripods.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2-1SuitaOsaka565-0871Japan
- PRESTOJapan Science and Technology Agency (JST)KawaguchiSaitama332-0012Japan
- Innovative Catalysis Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (ICS-OTRI)Osaka University1-1 YamadaokaSuitaOsaka565-0871Japan
| | - Takuya Omine
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2-1SuitaOsaka565-0871Japan
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2-1SuitaOsaka565-0871Japan
- Innovative Catalysis Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (ICS-OTRI)Osaka University1-1 YamadaokaSuitaOsaka565-0871Japan
| | - Kirsty Munro
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUnited Kingdom
| | - Manfred Buck
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUnited Kingdom
| | - Michael Zharnikov
- Angewandte Physikalische ChemieUniversität HeidelbergIm Neuenheimer Feld 25369120HeidelbergGermany
| |
Collapse
|
2
|
Zharnikov M, Shoji Y, Fukushima T. Tripodal Triptycenes as a Versatile Building Block for Highly Ordered Molecular Films and Self-Assembled Monolayers. Acc Chem Res 2025; 58:312-324. [PMID: 39772451 PMCID: PMC11756639 DOI: 10.1021/acs.accounts.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures. This ability makes it possible to form large-area molecular films having long-range structural integrity even on polymer substrates, which can be used to enhance the performance of organic devices. Importantly, the 2D assembly ability of tripodal triptycenes is robust and not impaired when chemically modified with functional molecular units and even with polymer chains. In addition, introducing suitable functionalities that act as anchoring groups results in reliable tripodal monomolecular assembly on application-relevant inorganic substrates, which is generally considered quite a challenging task. Self-assembled monolayers (SAMs) have been formed on Au(111), Ag(111), and indium tin oxide. On gold, these SAMs feature the nested hexagonal packing typical of 2D triptycene sheets, whereas, on silver, a distinct polymorphism with several different packing motifs occurs. Along with basic, nonsubstituted tripodal SAMs, specifically functionalized monolayers have been designed. A substitution pattern in which three nitrile tail groups build the outermost surface of a tripodal triptycene-based SAM has allowed for the study of femtosecond charge transfer dynamics across the triptycene framework, with a particular emphasis on the so-called matrix effects involving intramolecular pathways. The functionalization of the bridgehead position with a ferrocene tail group has enabled single-molecule observation of redox reactions and the creation of assemblies of unique molecular rectifiers, exhibiting highly effective rectification at a very low bias voltage. Complementary to the synthesis of these complex functional triptycenes, a strategy of on-surface click reactions has been designed. Indeed, a tripodal triptycene having an ethynyl tail group at the 10-position, capable of click reactions with azide functionalities, works well, allowing successive molecular layer deposition. The performance of tripodal triptycene-based SAMs has also been tested in the context of electron beam lithography (EBL) and nanofabrication, leading to the finding that these SAMs can serve as negative resists for EBL due to the efficient cross-linking, giving rise to triptycene-stemming carbon nanomembranes (CNM). These membranes feature the lowest lateral material densities used to date for CNM preparation, which makes them unique in this regard.
Collapse
Affiliation(s)
- Michael Zharnikov
- Applied
Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Yoshiaki Shoji
- Laboratory
for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated
Research, Institute of Science Tokyo, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8501, Japan
| | - Takanori Fukushima
- Laboratory
for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated
Research, Institute of Science Tokyo, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
3
|
Jiang QC, Iwai T, Jo M, Hosomi T, Yanagida T, Uchida K, Hashimoto K, Nakazono T, Yamada Y, Kobayashi A, Takizawa SY, Masai H, Terao J. Insulated π-Conjugated Azido Scaffolds for Stepwise Functionalization via Huisgen Cycloaddition on Metal Oxide Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403717. [PMID: 39046075 DOI: 10.1002/smll.202403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.
Collapse
Affiliation(s)
- Qi-Chun Jiang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Morihiro Jo
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
4
|
Tetenoire A, Omelchuk A, Malytskyi V, Jabin I, Lepeintre V, Bruylants G, Luo Y, Fihey A, Kepenekian M, Lagrost C. Multipodal Au-C grafting of calix[4]arene molecules on gold nanorods. Chem Sci 2024:d4sc02355b. [PMID: 39170717 PMCID: PMC11333938 DOI: 10.1039/d4sc02355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
The interface robustness and spatial arrangement of functional molecules on metallic nanomaterials play a key part in the potential applications of functional nano-objects. The design of mechanically stable and electronically coupled attachments with the underlying metal is essential to bring specific desirable properties to the resulting hybrid materials. In this context, rigid multipodal platforms constitute a unique opportunity for the controllable grafting of functionality. Herein, we provide for the first time an in-depth description of the interface between gold nanorods and a chemically-grafted multipodal platform based on diazonium salts. Thanks to Raman and X-ray photoelectron spectroscopies and theoretical modeling, we deliver insights on the structural and electronic properties of the hybrid material. More importantly, it allows for the accurate assignment of Raman bands. The combination of experimental and theoretical results establishes the formation of four carbon-gold anchors for the calix[4]arene macrocycle leading to the exceptional stability of the functionalized nano-objects. Our results lay the foundations for the future design of robust and versatile platforms.
Collapse
Affiliation(s)
- Auguste Tetenoire
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Anna Omelchuk
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Volodymyr Malytskyi
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
| | - Victor Lepeintre
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques F-75006 Paris France
| | - Arnaud Fihey
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Mikaël Kepenekian
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Corinne Lagrost
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| |
Collapse
|
5
|
Bunjes O, Rittmeier A, Hedman D, Hua SA, Paul LA, Meyer F, Ding F, Wenderoth M. Testing functional anchor groups for the efficient immobilization of molecular catalysts on silver surfaces. Commun Chem 2024; 7:107. [PMID: 38724592 PMCID: PMC11082172 DOI: 10.1038/s42004-024-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts. In this study, the complex fac-Re(S-Sbpy)(CO)3Cl (S-Sbpy = 3,3'-disulfide-2,2'-bipyridine), a sulfurated derivative of the prominent Re(bpy)(CO)3Cl class of CO2 reduction catalysts, was deposited onto the clean Ag(001) surface at room temperature. The complex is thermostable upon sublimation as supported by infrared absorption and nuclear magnetic resonance spectroscopy. Its anchoring process has been analyzed using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The growth behavior was directly contrasted to the one of the parent complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine). The sulfurated complex nucleates as single molecule at different surface sites and at molecule clusters. In contrast, for the parent complex nucleation only occurs in clusters of several molecules at specifically oriented surface steps. While this shows that surface immobilization of the sulfurated complex is more efficient as compared to the parent, symmetry analysis of the STM topographic data supported by DFT calculations indicates that more than 90% of the complexes adsorb in a geometric configuration very similar to the one of the parent complex.
Collapse
Affiliation(s)
- Ole Bunjes
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Alexandra Rittmeier
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Daniel Hedman
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Shao-An Hua
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Lucas A Paul
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, D-37077, Göttingen, Germany
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Martin Wenderoth
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, D-37077, Göttingen, Germany.
| |
Collapse
|
6
|
Zhang C, Das S, Sakurai N, Imaizumi T, Sanjayan S, Shoji Y, Fukushima T, Zharnikov M. Phosphonic acid anchored tripodal molecular films on indium tin oxide. Phys Chem Chem Phys 2024; 26:11360-11369. [PMID: 38567399 DOI: 10.1039/d4cp00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Whereas monopodal self-assembling monolayers (SAMs) are most frequently used for surface and interface engineering, tripodal SAMs are less popular due to the difficulty in achieving a reliable and homogeneous bonding configuration. In this context, in the present study, the potential of phosphonic acid (PA) decorated triptycene (TripPA) for formation of SAMs on oxide substrates was studied, using indium tin oxide (ITO) as a representative and application-relevant test support. A combination of several complementary experimental techniques was applied and a suitable monopodal reference system, benzylphosphonic acid (PPA), was used. The resulting data consistently show that TripPA forms well-defined, densely packed, and nearly contamination-free tripodal SAMs on ITO, with the similar parameters and properties as the monopodal reference system. Modification of wetting properties and work function of ITO by non-substituted and cyano-decorated TripPA SAMs was demonstrated, showing a potential of this tripodal system for surface engineering of oxide substrates.
Collapse
Affiliation(s)
- Chaoran Zhang
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
| | - Saunak Das
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
| | - Naoya Sakurai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Takaki Imaizumi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Sajisha Sanjayan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Tang K, Shao JY, Zhong YW. Photoelectrochemical cells with a pyridine-anchored organic dye photoanode for efficient H 2 generation by water reduction. Chem Commun (Camb) 2023; 59:6072-6075. [PMID: 37114732 DOI: 10.1039/d3cc01017a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
TiO2 photoelectrodes modified with organic dyes with pyridine anchoring groups are prepared, which are used as photoanodes of dye-sensitized photoelectrochemical cells for efficient water reduction with high photocurrent density and stability in aqueous solutions. Vigorous H2 generation with a production rate of around 250 μmol h-1 is realized with a photoanode of an active area of 5 × 5 cm2.
Collapse
Affiliation(s)
- Kun Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Retout M, Jabin I, Bruylants G. Synthesis of Ultrastable and Bioconjugable Ag, Au, and Bimetallic Ag_Au Nanoparticles Coated with Calix[4]arenes. ACS OMEGA 2021; 6:19675-19684. [PMID: 34368555 PMCID: PMC8340414 DOI: 10.1021/acsomega.1c02327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 05/02/2023]
Abstract
Compared to gold nanoparticles, silver nanoparticles are largely underexploited for the development of plasmonic nanosensors. This is mainly due to their easy chemical degradation through oxidation, poor colloidal stability, and usually broad size distribution after synthesis, which leads to broad localized surface plasmon resonance bands. Coatings based on polymers such as poly(ethylene glycol) (PEG) or poly(vinylpyrrolidone) (PVP) and plant extracts have been used for the stabilization of AgNPs; however, these thick coatings are not suitable for sensing applications as they isolate the metallic core. The examples of stable AgNPs coated with a thin organic layer remain scarce in comparison to their gold counterparts. In this work, we present a convenient one-step synthesis strategy that allows to obtain unique gold, silver, and bimetallic NPs that combine all of the properties required for biosensing applications. The NPs are stabilized by a tunable calix[4]arene-based monolayer obtained through the reduction of calix[4]arene-tetradiazonium salts. These multidentate ligands are of particular interest as (i) they provide excellent colloidal and chemical stabilities to the particles thanks to their anchoring to the surface via multiple chemical bonds, (ii) they allow the subsequent (bio)conjugation of (bio)molecules under mild conditions, and (iii) they allow a control over the composition of mixed coating layers. Ag and Ag_Au nanoparticles of a high stability are obtained, opening perspectives for development of numerous biosensing applications.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
9
|
Das S, Nascimbeni G, de la Morena RO, Ishiwari F, Shoji Y, Fukushima T, Buck M, Zojer E, Zharnikov M. Porous Honeycomb Self-Assembled Monolayers: Tripodal Adsorption and Hidden Chirality of Carboxylate Anchored Triptycenes on Ag. ACS NANO 2021; 15:11168-11179. [PMID: 34125529 PMCID: PMC8320238 DOI: 10.1021/acsnano.1c03626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Molecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures. A pronounced polymorphism is observed, with the formation of distinctly different structures depending on preparation conditions. Besides hexagonal molecular arrangements, the occurrence of a honeycomb structure is particularly intriguing as such an open structure is unusual for SAMs consisting of upright-standing molecules. Advanced spectroscopic tools reveal an equivalent bonding of all carboxylic acid anchoring groups. Notably, density functional theory calculations predict a chiral arrangement of the molecules in the honeycomb network, which, surprisingly, is not apparent in experimental scanning tunneling microscopy (STM) images. This seeming discrepancy between theory and experiment can be resolved by considering the details of the actual electronic structure of the adsorbate layer. The presented results represent an exemplary showcase for the intricacy of interpreting STM images of complex molecular films. They are also further evidence for the potential of triptycenes as basic building blocks for generating well-defined layers with unusual structural motifs.
Collapse
Affiliation(s)
- Saunak Das
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Giulia Nascimbeni
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | | | - Fumitaka Ishiwari
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Manfred Buck
- EaStCHEM
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Michael Zharnikov
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Steiner AM, Lissel F, Fery A, Lauth J, Scheele M. Perspektiven gekoppelter organisch‐anorganischer Nanostrukturen für Ladungs‐ und Energietransferanwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201916402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anja Maria Steiner
- Institut Physikalische Chemie und Physik der Polymere Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
| | - Franziska Lissel
- Institut Makromolekulare Chemie Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
- Technische Universität Dresden Mommsenstr. 4 01064 Dresden Deutschland
| | - Andreas Fery
- Institut Physikalische Chemie und Physik der Polymere Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
- Technische Universität Dresden Mommsenstr. 4 01064 Dresden Deutschland
| | - Jannika Lauth
- Leibniz-Universität Hannover Institut für Physikalische Chemie und Elektrochemie Callinstr. 3A 30167 Hannover Deutschland
| | - Marcus Scheele
- Eberhard-Karls-Universität Tübingen Institut für Physikalische und Theoretische Chemie Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
11
|
Steiner AM, Lissel F, Fery A, Lauth J, Scheele M. Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications. Angew Chem Int Ed Engl 2021; 60:1152-1175. [PMID: 32173981 PMCID: PMC7821299 DOI: 10.1002/anie.201916402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/20/2022]
Abstract
We review the field of organic-inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
Collapse
Affiliation(s)
- Anja Maria Steiner
- Institute for Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular ChemistryLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
- Technische Universität DresdenMommsenstr. 401064DresdenGermany
| | - Andreas Fery
- Institute for Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
- Technische Universität DresdenMommsenstr. 401064DresdenGermany
| | - Jannika Lauth
- Leibniz Universität HannoverInstitute of Physical Chemistry and ElectrochemistryCallinstr. 3A30167HannoverGermany
| | - Marcus Scheele
- Eberhard Karls-Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
12
|
Mattiuzzi A, Lenne Q, Carvalho Padilha J, Troian-Gautier L, Leroux YR, Jabin I, Lagrost C. Strategies for the Formation of Monolayers From Diazonium Salts: Unconventional Grafting Media, Unconventional Building Blocks. Front Chem 2020; 8:559. [PMID: 32766206 PMCID: PMC7381217 DOI: 10.3389/fchem.2020.00559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Pioneered by J. Pinson and coll. in 1990s, the reductive grafting of aryldiazonium salts has become a powerful method for surface functionalization. Highly robust interfaces result from this surface attachment, resistant to heat, chemical degradation and ultrasonication. Importantly, this approach can be applied to many materials, ranging from conducting, semi-conducting, oxides to insulating substrates. In addition, either massive, flat surfaces or nanomaterials can be functionalized. The method is easy to process and fast. The grafting process involves the formation of highly reactive aryl radicals able to attack the substrate. However, the generated radicals can also react with already-grafted aryl species, leading to the formation of loosely-packed polyaryl multilayer films, typically of 10-15 nm thick. It is thus highly challenging to control the vertical extension of the deposited layer and to form well-ordered monolayers from aryldiazonium salts. In this mini review, we briefly describe the different strategies that have been developed to prepare well-ordered monolayers. We especially focus on two strategies successfully used in our laboratories, namely the use of unconventional solvents, i.e., room temperature ionic liquids (RTILs), as grafting media and the use of calixarene macrocycles by taking benefit of their pre-organized structure. These strategies give large possibilities for the structuring of interfaces with the widest choice of materials and highlight the potential of aryldiazonium grafting as a competitive alternative to self-assembled monolayers (SAMs) of alkyl thiols.
Collapse
Affiliation(s)
| | | | - Janine Carvalho Padilha
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
13
|
Benneckendorf FS, Rohnacher V, Sauter E, Hillebrandt S, Münch M, Wang C, Casalini S, Ihrig K, Beck S, Jänsch D, Freudenberg J, Jaegermann W, Samorì P, Pucci A, Bunz UHF, Zharnikov M, Müllen K. Tetrapodal Diazatriptycene Enforces Orthogonal Orientation in Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6565-6572. [PMID: 31825591 DOI: 10.1021/acsami.9b16062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well-defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate, with at least three of the four anchoring groups providing thiolate-like covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path toward advanced surface engineering and sensor fabrication.
Collapse
Affiliation(s)
- Frank S Benneckendorf
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
| | - Valentina Rohnacher
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Eric Sauter
- Angewandte Physikalische Chemie , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Sabina Hillebrandt
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy , University of St Andrews , North Haugh , St Andrews KY16 9SS , United Kingdom
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Maybritt Münch
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Materials Science Department, Surface Science Division , TU Darmstadt , Otto-Berndt-Straße 3 , 64287 Darmstadt , Germany
| | - Can Wang
- University of Strasbourg , CNRS, ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Stefano Casalini
- University of Strasbourg , CNRS, ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Katharina Ihrig
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Sebastian Beck
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
| | - Daniel Jänsch
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
| | - Wolfram Jaegermann
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Materials Science Department, Surface Science Division , TU Darmstadt , Otto-Berndt-Straße 3 , 64287 Darmstadt , Germany
| | - Paolo Samorì
- University of Strasbourg , CNRS, ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Annemarie Pucci
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Kirchhoff-Institut für Physik , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany
- Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 , 69120 Heidelberg , Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 , 69120 Heidelberg , Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Klaus Müllen
- InnovationLab , Speyerer Straße 4 , 69115 Heidelberg , Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
14
|
Troian-Gautier L, Mattiuzzi A, Reinaud O, Lagrost C, Jabin I. Use of calixarenes bearing diazonium groups for the development of robust monolayers with unique tailored properties. Org Biomol Chem 2020; 18:3624-3637. [DOI: 10.1039/d0ob00070a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calixarene-based diazonium salts can be easily synthesized in a few steps. This review surveys recent examples that illustrate the key advantages of these highly reactive molecular platforms for surface modification.
Collapse
Affiliation(s)
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
- X4C
| | - Olivia Reinaud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université de Paris
- 75006 Paris
- France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| |
Collapse
|