1
|
Weerasinghe MASN, Nwoko T, Konkolewicz D. Polymers and light: a love-hate relationship. Chem Sci 2025; 16:5326-5352. [PMID: 40103712 PMCID: PMC11912025 DOI: 10.1039/d5sc00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
The study of the interaction between polymers and light has significantly bloomed over the past few years in various fundamental research and applications. The relationship between polymers and light can be beneficial (we refer to this as "love") or be destructive (we refer to this as "hate"). It is important to understand the nature of both these love and hate relationships between polymers and light to apply these concepts in various future systems, to surpass performance of existing materials, or to mitigate some problems associated with polymers. Therefore, this perspective highlights both the photophilic (e.g., photopolymerization, rate modulation, temporal/spatial control, drug delivery, waste management, photo functionalization, and photo-enhanced depolymerization) and photophobic (e.g., photodegradation, discoloration, optical density, and loss of functionality) nature of polymers.
Collapse
Affiliation(s)
| | - Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| |
Collapse
|
2
|
Yang BB, Wu SY, Zhang QP, Ma H, Sun YL, Zhang C. Tetraptycene derivatives: synthesis, structure and their self-assemblies in solid state. RSC Adv 2025; 15:8293-8299. [PMID: 40103996 PMCID: PMC11912553 DOI: 10.1039/d5ra00376h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
As iptycenes of arenes are fused to a bicyclo[2.2.2]octatriene bridgehead system, there are only odd-sequenced iptycene family members, such as triptycene, pentiptycene and heptiptycene. In order to ensure the completeness of the iptycene family sequence, developing even-sequenced iptycene family members is of great significance. The dimer of anthracene derivatives is a class of tricyclo[2.2.2.2]dodetetraene molecules with four separate phenyl rings, which are structurally similar to the iptycene family and herein referred to as "tetraptycene". In this work, a series of hydroxyl or methoxy-substituted tetraptycene derivatives from the photochemical reactions of anthracene derivatives was reported. These tetraptycene derivatives were characterized using nuclear magnetic resonance (NMR), mass spectrum (MS) and single-crystal X-ray diffraction (SC-XRD). Moreover, their self-assemblies in the solid state were further discussed. Their properties of modifiability, asymmetry, and rigidity indicate their superiority as novel monomers to construct functional material architectures.
Collapse
Affiliation(s)
- Bin-Bin Yang
- College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Si-Yuan Wu
- College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Qing-Pu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui Ma
- College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yu-Ling Sun
- College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Chun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
3
|
Pina MM, Yan Y, Thomas SW. Photooxidation and Cleavage of Ethynylated 9,10-Dimethoxyanthracenes with Acid-Labile Ether Bonds. J Org Chem 2025; 90:1996-2007. [PMID: 39874066 DOI: 10.1021/acs.joc.4c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This paper describes a series of 12 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (1O2). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA). Furthermore, all 12 molecules react with 1O2 through cycloaddition at the 9 and 10 positions to form endoperoxides. Although the presence of ethynyl groups decreases the reaction rates, they are at least 40% of the rate observed for DMA. Finally, these endoperoxides cleave to form quinones when exposed to protic acid. This behavior, combined with the red-shifting of absorbance spectra, emphasizes their potential in photocleavable materials.
Collapse
Affiliation(s)
- Manuel M Pina
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States
| | - Yu Yan
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States
| | - Samuel W Thomas
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States
| |
Collapse
|
4
|
Wu L, Huang XD, Li W, Cao X, Fang WH, Zheng LM, Dolg M, Chen X. Lanthanide-Dependent Photochemical and Photophysical Properties of Lanthanide-Anthracene Complexes: Experimental and Theoretical Approaches. JACS AU 2024; 4:3606-3618. [PMID: 39328746 PMCID: PMC11423329 DOI: 10.1021/jacsau.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
The structural, photophysical, and photochemical properties of Ln(depma)(hmpa)2(NO3)3 (Ln = La, Ce, Nd, Sm, Eu, Tb, Ho, Er, and Yb) complexes 1-Ln were investigated with a multidisciplinary approach involving synthesis, photocycloaddition-based crystal engineering, spectroscopic analytical techniques and quantum chemical ab initio calculations. Depending on the Ln3+ ion the isostructural 1-Ln complexes exhibit quite different behavior upon excitation at 350-400 nm. Some 1-Ln complexes (Ln = La, Ce, Sm, Tb, Yb) emit a broad and strong band near 533 nm arising from paired anthracene moieties, whereas others (Ln = Nd, Eu, Ho, Er) do not. 1-Eu is not emissive at all, whereas 1-Nd, 1-Ho, and 1-Er exhibit a Ln3+ based luminescence. Upon irradiation with 365 nm ultraviolet (UV) light 1-Ln (Ln = La, Ce, Sm, Tb, Yb) dimerize by means of a photochemically induced [4 + 4] cycloaddition of the anthracene moieties, whereas 1-Ln (Ln = Nd, Eu, Ho, Er) remain monomers. We propose three models, based on the matching of the energy levels between the Ln3+ ion and the paired or dimerized anthracene units in the energy-resonance crossing region, as well as on internal conversion-driven and intersystem crossing-driven energy transfer, which explain the Ln3+ ion regulated photophysics and photochemistry of the 1-Ln complexes.
Collapse
Affiliation(s)
- Liangliang Wu
- Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaoyan Cao
- Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Theoretical Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Michael Dolg
- Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Theoretical Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
5
|
Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A. Cyclodextrin 'Chaperones' Enable Quasi-Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red-shifted Photoswitches in Water. Angew Chem Int Ed Engl 2024; 63:e202405582. [PMID: 38640085 DOI: 10.1002/anie.202405582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Precision-engineered light-triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π-conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host-guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene-end-functionalized star-shaped polyethylene glycols (sPEGs). We initially unravel details of the host-guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi-ideal model networks, and derive details on their association dynamics using in-depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo-mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.
Collapse
Affiliation(s)
- Daniel Hoenders
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Simon Ludwanowski
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Walther
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
6
|
Luo R, Xiang X, Jiao Q, Hua H, Chen Y. Photoresponsive Hydrogels for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:3612-3630. [PMID: 38816677 DOI: 10.1021/acsbiomaterials.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Collapse
Affiliation(s)
- Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xianjing Xiang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hui Hua
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
7
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
8
|
Yan Y, Brega V, Pina MM, Thomas SW. Electronic effects of conjugated aryl groups on the properties and reactivities of di(arylethynyl)tetracenes. Org Biomol Chem 2024; 22:289-295. [PMID: 38054249 DOI: 10.1039/d3ob01601c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The photochemical oxidations of acenes can cause challenges with their optoelectronic applications, such as singlet fission and organic transistors. At the same time, these reactions form the basis for many luminescent sensing schemes for 1O2. While diethynyl substitution is arguably the most widely adopted of the various substitution strategies to control oxidation and also improve solubility and processability of long acenes, the extent to which differences between the alkyne groups can influence key properties of long acenes remains largely unknown. This report therefore describes the effects of various arenes and heteroarenes on the electronic structures, optical properites, and reactivity with singlet oxygen for eight 5,12-di(arylethynyl)tetracenes. The fluorescence spectra of these tetracenes span approximately 100 nm, while their observed rate constants for reaction with singlet oxygen correlates strongly with the HOMO level, spanning one order of magnitude. They are also amenable to fluorescent materials that respond ratiometrically to singlet oxygen. Therefore, electronic effects of groups directly conjugated to ethynylacenes offer a useful chemical space for rational acene design.
Collapse
Affiliation(s)
- Yu Yan
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Valentina Brega
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Manuel M Pina
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Samuel W Thomas
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Sasaki Y, Ohashi T, Mori H. Photoinduced healable hybrids based on anthracene-containing silsesquioxane nanoparticles. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|