1
|
Fan X, He Z, Guo J, Bu D, Han D, Qu X, Li Q, Cheng S, Han A, Guo J. Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction. Sci Rep 2025; 15:14282. [PMID: 40275021 DOI: 10.1038/s41598-025-98565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data from glioblastoma (GBM) and low-grade glioma (LGG) samples, we identified 55 distinct cell states via the EcoTyper framework, validated for stability and prognostic impact in an independent cohort. We constructed multi-omics datasets of 620 samples, integrating transcriptomic, copy number variation (CNV), somatic mutation (MUT), Microbe (MIC), EcoTyper result data. A scRNA-seq enhanced Self-Normalizing Network-based glioma prognosis model achieved a C-index of 0.822 (training) and 0.817 (test), with AUC values of 0.867, 0.876, and 0.844 at 1, 3, and 5 years in the training set, and 0.820, 0.947, and 0.936 in the test set. Gradient attribution analysis enhanced the interpretability of the model and identified key molecular markers. The classification into high- and low-risk groups was validated as an independent prognostic factor. HDAC inhibitors are proposed as potential treatments. This study demonstrates the potential of integrating scRNA-seq and multi-omics data for robust glioma prognosis and clinical decision-making support.
Collapse
Affiliation(s)
- Xuan Fan
- School of Management, Beijing University of Chinese Medicine, Ningbo, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Ningbo, China
- Beijing University of Chinese Medicine, Ningbo, China
| | - Zihao He
- Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Jing Guo
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Dongchen Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Ningbo, China
- Beijing University of Chinese Medicine, Ningbo, China
| | - Xinchi Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Ningbo, China
- Beijing University of Chinese Medicine, Ningbo, China
| | - Qihang Li
- Henan University, Kaifeng, 475004, China
| | - Sen Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
| | - Aiqing Han
- School of Management, Beijing University of Chinese Medicine, Ningbo, China.
- Beijing University of Chinese Medicine, Ningbo, China.
| | - Jincheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Ningbo, China.
- Beijing University of Chinese Medicine, Ningbo, China.
| |
Collapse
|
2
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Krakowski A, Hoang N, Trost B, Summers J, Ambrozewicz P, Vorstman J. Global developmental delay and a de novo deletion of the 16p13.13 region. BMJ Case Rep 2024; 17:e251521. [PMID: 38423574 PMCID: PMC10910685 DOI: 10.1136/bcr-2022-251521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Many rare genetic variants are associated with the risk of atypical neurodevelopmental trajectories. In this study, we report a patient with developmental delay, autistic traits and multiple congenital anomalies, including congenital heart anomalies and orofacial cleft, with a 0.832 Mb de novo deletion of the 16p13.13 region classified as a variant of uncertain significance. Comparison of similar sized deletions and duplications overlapping the same genes in the DECIPHER database, revealed seven reports of copy number variants (CNVs), four duplications and three deletions. A neurodevelopmental phenotype including learning disability and intellectual disability was noted in some of the DECIPHER entries where phenotype was provided. Although the association between a deletion in this region and an atypical neurodevelopmental trajectory remains to be elucidated, the overlapping CNVs with neurodevelopmental phenotypes suggests possible candidate genes within the 16p13.13 region.
Collapse
Affiliation(s)
- Aneta Krakowski
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ny Hoang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane Summers
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
| | - Patricia Ambrozewicz
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
| | - Jacob Vorstman
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Colizzi M, Zhang F. Editorial: Case reports in autism. Front Psychiatry 2024; 15:1357823. [PMID: 38322138 PMCID: PMC10844547 DOI: 10.3389/fpsyt.2024.1357823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fengyu Zhang
- Global Clinical and Translational Research Institute, Bethesda, MD, United States
| |
Collapse
|
5
|
Yang JS, Liu TY, Chen YC, Tsai SC, Chiu YJ, Liao CC, Tsai FJ. Genome-Wide Association Study of Alopecia Areata in Taiwan: The Conflict Between Individuals and Hair Follicles. Clin Cosmet Investig Dermatol 2023; 16:2597-2612. [PMID: 37752970 PMCID: PMC10519225 DOI: 10.2147/ccid.s428788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Purpose Alopecia areata (AA) is one of the most prevalent autoimmune diseases affecting humans. Given that hair follicles are immune-privileged, autoimmunity can result in disfiguring hair loss. However, the genetic basis for AA in the Taiwanese population remains unknown. Materials and Methods A genome-wide association study was conducted using a cohort of 408 AA cases and 8167 controls. To link variants to gene relationships, we used 882 SNPs (P<1E-05) within 74 genes that were associated with AA group to build the biological networks by IPA software. HLA diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)-R package and chi-square analysis. Results Seven single nucleotide polymorphisms (SNPs) including LINC02006 (rs531166736, rs187306735), APC (rs112800832_C_CAT), SRP19 (rs139948960, rs144784670), EGFLAM (rs16903975) and LDLRAD3 (rs79874564) were closely associated with the AA phenotype (P<5E-08). Examination of biological networks revealed that these genomic areas are associated with antigen presentation signaling, B cell and T cell development, Th1 and Th2 activation pathways, Notch signaling, crosstalk signaling between dendritic cells and natural killer cells, and phagosome maturation. Based on human leukocyte antigen (HLA) genotype analysis, four HLA genotypes (HLA-B*15:01-*40:01, HLA-DQA1*01:02-*03:03, HLA-DQA1*01:02, and HLA-DQB1*02:01) were found to be associated with AA (adjusted p-value<0.05). HLA-DQA1*01:02 is the most significantly related gene in the Taiwanese population (adjusted p-value = 2.09E-05). Conclusion This study successfully identified susceptibility loci associated with AA in the Taiwanese population. These findings not only shed light on the origins of AA within the Taiwanese context but also contribute to a comprehensive understanding of the genetic factors influencing AA susceptibility.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chi-Chou Liao
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
- China Medical University Children’s Hospital, Taichung, 404327, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, 404327, Taiwan
| |
Collapse
|
6
|
Wang Q, Song X, Bi Y, Zhu H, Wu X, Guo Z, Liu M, Pan C. Detection distribution of CNVs of SNX29 in three goat breeds and their associations with growth traits. Front Vet Sci 2023; 10:1132833. [PMID: 37706075 PMCID: PMC10495836 DOI: 10.3389/fvets.2023.1132833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 09/15/2023] Open
Abstract
As a member of the SNX family, the goat sorting nexin 29 (SNX29) is initially identified as a myogenesis gene. Therefore, this study aimed to examine the polymorphism in the SNX29 gene and its association with growth traits. In this study, we used an online platform to predict the structures of the SNX29 protein and used quantitative real-time PCR to detect potential copy number variation (CNV) in Shaanbei white cashmere (SBWC) goats (n = 541), Guizhou black (GB) goats (n = 48), and Nubian (NB) goats (n = 39). The results showed that goat SNX29 protein belonged to non-secretory protein. Then, five CNVs were detected, and their association with growth traits was analyzed. In SBWC goats, CNV1, CNV3, CNV4, and CNV5 were associated with chest width and body length (P < 0.05). Among them, the CNV1 individuals with gain and loss genotypes were superior to those individuals with a median genotype, but CNV4 and CNV5 of individuals with the median genotype were superior to those with the loss and gain genotypes. In addition, individuals with the gain genotype had superior growth traits in CNV3. In brief, this study suggests that the CNV of SNX29 can be used as a molecular marker in goat breeding.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- Animal Husbandry and Veterinary Science Institute of Bijie City, Bijie, Guizhou, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Wang T, Liu L, Fan T, Xia K, Sun Z. Shared and divergent contribution of vitamin A and oxytocin to the aetiology of autism spectrum disorder. Comput Struct Biotechnol J 2023; 21:3109-3123. [PMID: 38213898 PMCID: PMC10782014 DOI: 10.1016/j.csbj.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 01/13/2024] Open
Abstract
Rare genetic variations contribute to the heterogeneity of autism spectrum disorder (ASD) and the responses to various interventions for ASD probands. However, the associated molecular underpinnings remain unclear. Herein, we estimated the association between rare genetic variations in 410 vitamin A (VA)-related genes (VARGs) and ASD aetiology using publicly available de novo mutations (DNMs), rare inherited variants, and copy number variations (CNVs) from about 50,000 ASD probands and 20,000 normal controls (discovery and validation cohorts). Additionally, given the functional relevance of VA and oxytocin, we systematically compared the similarities and differences between VA and oxytocin with respect to ASD aetiology and evaluated their potential for clinical applications. Functional DNMs and pathogenic CNVs in VARGs contributed to ASD pathogenesis in the discovery and validation cohorts. Additionally, 324 potential VA-related biomarkers were identified, 243 of which were shared with previously identified oxytocin-related biomarkers, while 81 were unique VA biomarkers. Moreover, multivariable logistic regression analysis revealed that both VA- and oxytocin-related biomarkers were able to predict ASD aetiology for individuals carrying functional DNM in corresponding biomarkers with an average precision of 0.94. As well as, convergent and divergent functions were also identified between VA- and oxytocin-related biomarkers. The findings of this study provide a basis for future studies aimed at understanding the pathophysiological mechanisms underlying ASD while also defining a set of potential molecular biomarkers for adjuvant diagnosis and intervention in ASD.
Collapse
Affiliation(s)
- Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Liqiu Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianda Fan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai 200031, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410078, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Effects of Genetic Variation of the Sorting Nexin 29 ( SNX29) Gene on Growth Traits of Xiangdong Black Goat. Animals (Basel) 2022; 12:ani12243461. [PMID: 36552381 PMCID: PMC9774745 DOI: 10.3390/ani12243461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Previous studies have found that the copy number variation (CNV) and insertion/deletion (indels) located in the sorting nexin 29 (SNX29) gene, which is an important candidate gene related to meat production and quality, are associated with growth traits of African goats and Shaanbei white cashmere goats. However, the genetic effects of SNX29 genetic variation on growth traits of Xiangdong black (XDB) goat (a representative meat goat breed in China) are still unclear. The purpose of this study was to detect the mRNA expression level of SNX29 and to explore the genetic effects of CNV and indel within SNX29 on growth traits and gene expression in XDB goat. The SNX29 mRNA expression profile showed that the SNX29 was highly expressed in adipose tissues, indicating that the SNX29 gene could play a key role in subcutaneous adipose deposition of XDB goat. 17 bp indel (g.10559298-10559314), 21 bp indel (g.10918982-10919002) and CNV were detected in 516 individuals of XDB goat by PCR or qPCR. The association analysis of SNX29 CNV with growth traits in XDB goats showed that SNX29 CNV was significantly correlated with chest circumference and abdominal circumference (p < 0.01), and the normal type of SNX29 CNV goat individuals were more advantageous. For the mRNA expression of SNX29 gene, individuals with SNX29 copy number normal type had a higher trend than that of SNX29 gene with copy number gain type in longissimus dorsi muscle (p = 0.07), whereas individuals with SNX29 copy number gain type had a higher trend in abdominal adipose (p = 0.09). Overall, these results suggested that the SNX29 gene could play an important role in growth and development of XDB goats and could be used for marker-assisted selection (MAS) in XDB goats.
Collapse
|
10
|
Wang Q, Bi Y, Wang Z, Zhu H, Liu M, Wu X, Pan C. Goat SNX29: mRNA expression, InDel and CNV detection, and their associations with litter size. Front Vet Sci 2022; 9:981315. [PMID: 36032302 PMCID: PMC9399746 DOI: 10.3389/fvets.2022.981315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
The sorting nexin 29 (SNX29) gene, a member of the SNX family, is associated with material transport and lipid metabolism. Previous studies have shown that lipid metabolism affects reproductive function in animals. Thus, we hypothesized there is a correlation between the SNX29 gene and reproductive trait. To date, studies on the relationship between the SNX29 gene and reproductive traits are limited. Therefore, the purpose of this study was to examine the polymorphism in the SNX29 gene and its correlation with litter size. Herein, the mRNA expression levels of SNX29 were assayed in various goat tissue. Surprisingly, we found that SNX29 was highly expressed in the corpus luteum, large and small follicles. This result led us to suggest that the SNX29 gene has a critical role in reproduction. We further detected potential polymorphisms in Shaanbei white cashmere (SBWC) goats, including insertion/deletion (InDel, n = 2,057) and copy number variation (CNV, n = 1,402), which were related to fertility. The 17 bp deletion (n = 1004) and the 20 bp deletion (n = 1,053) within the SNX29 gene were discovered to be significantly associated with litter size (P < 0.05), and individuals the ID genotype of P1-Del-17 bp and the DD genotype of P2-Del-20bp had larger litter size. Additionally, the four CNV loci had significant correlations with litter size (P < 0.01) in our detected population. In CNV5, individuals with the median genotype were superior compared to those with loss or gain genotype in term of litter size, and in other three CNVs showed better reproductive trait in the gain genotype. Briefly, these findings suggest that SNX29 could be used as a candidate gene for litter size in goat breeding through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zhiying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Chuanying Pan
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Xianfeng Wu
| |
Collapse
|
11
|
Moldenhauer HJ, Dinsdale RL, Alvarez S, Fernández-Jaén A, Meredith AL. Effect of an autism-associated KCNMB2 variant, G124R, on BK channel properties. Curr Res Physiol 2022; 5:404-413. [PMID: 36203817 PMCID: PMC9531041 DOI: 10.1016/j.crphys.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
BK K+ channels are critical regulators of neuron and muscle excitability, comprised of a tetramer of pore-forming αsubunits from the KCNMA1 gene and cell- and tissue-selective β subunits (KCNMB1-4). Mutations in KCNMA1 are associated with neurological disorders, including autism. However, little is known about the role of neuronal BK channel β subunits in human neuropathology. The β2 subunit is expressed in central neurons and imparts inactivation to BK channels, as well as altering activation and deactivation gating. In this study, we report the functional effect of G124R, a novel KCNMB2 mutation obtained from whole-exome sequencing of a patient diagnosed with autism spectrum disorder. Residue G124, located in the extracellular loop between TM1 and TM2, is conserved across species, and the G124R missense mutation is predicted deleterious with computational tools. To investigate the pathogenicity potential, BK channels were co-expressed with β2WT and β2G124R subunits in HEK293T cells. BK/β2 currents were assessed from inside-out patches under physiological K+ conditions (140/6 mM K+ and 10 μM Ca2+) during activation and inactivation (voltage-dependence and kinetics). Using β2 subunits lacking inactivation (β2IR) revealed that currents from BK/β2IRG124R channels activated 2-fold faster and deactivated 2-fold slower compared with currents from BK/β2IRWT channels, with no change in the voltage-dependence of activation (V1/2). Despite the changes in the BK channel opening and closing, BK/β2G124R inactivation rates (τinact and τrecovery), and the V1/2 of inactivation, were unaltered compared with BK/β2WT channels under standard steady-state voltage protocols. Action potential-evoked current was also unchanged. Thus, the mutant phenotype suggests the β2G124R TM1-TM2 extracellular loop could regulate BK channel activation and deactivation kinetics. However, additional evidence is needed to validate pathogenicity for this patient-associated variant in KCNMB2. KCNMA1 channelopathy is a neurobehavioral disorder associated with seizures, dyskinesia, and intellectual disability. KCNMB2 encodes an accessory β subunit that confers inactivation to the KCNMA1 pore-forming α subunit BK channel. The KCNMB2-G124R variant, identified in an autistic individual, affects BK/β2 channel activation but not inactivation.
Collapse
Affiliation(s)
- Hans J. Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ria L. Dinsdale
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Alberto Fernández-Jaén
- Dept. of Pediatric Neurology, Hospital Universitario Quirónsalud, School of Medicine, Universidad Europea de, Madrid, Spain
| | - Andrea L. Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Corresponding author. Dept. of Physiology University of Maryland School of Medicine, 655 W. Baltimore St. Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Chen JH, Zhao Y, Khan RAW, Li ZQ, Zhou J, Shen JW, Xiang SY, Li NN, Wen ZJ, Jian XM, Song ZJ, Stewart R, Wang Z, Pan D, He L, Xu YF, Shi YY. SNX29, a new susceptibility gene shared with major mental disorders in Han Chinese population. World J Biol Psychiatry 2021; 22:526-534. [PMID: 33143498 DOI: 10.1080/15622975.2020.1845793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Environmental and genetic factors play important roles in the development of schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD). Some risk loci are identified with shared genetic effects on major psychiatric disorders. To investigate whether SNX29 gene played a significant role in these psychiatric disorders in the Han Chinese population. METHODS We focussed on 11 single-nucleotide polymorphisms (SNPs) harbouring SNX29 gene and carried out case-control studies in patients with SCZ (n = 1248), BPD (n = 1344), or MDD (n = 1056), and 1248 healthy controls (HC) recruited from the Han Chinese population. We constructed weighted gene co-expression network analysis (WGCNA) and extracted significant modules by R package. RESULTS We found that rs3743592 was significantly associated with MDD and rs6498263 with BPD in both allele and genotype distributions. Before correction, rs3743592 showed allelic and genotypic significance with SCZ, rs6498263 showed allelic significance with SCZ. WGCNA identified top 10 modules of co-expressed genes. Gene Ontology (GO) and pathway analysis were used to examine the functions of SNX29, which revealed that SNX29 was involved in the regulation of a number of biological processes, such as TGF-beta, ErbB, and Wnt signalling pathway, etc. CONCLUSIONS Our results supported common risk factors in SNX29 might share among these three mental disorders in the Han Chinese population.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Zhi-Qiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jia-Wei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Si-Ying Xiang
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ning-Ning Li
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zu-Jia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xue-Min Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi-Jian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi-Feng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yong-Yong Shi
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China
- Shanghai Changning Mental Health Center, Shanghai, P. R. China
- Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, P. R. China
| |
Collapse
|
13
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Al-Sarraj Y, Al-Dous E, Taha RZ, Ahram D, Alshaban F, Tolfat M, El-Shanti H, Albagha OM. Family-Based Genome-Wide Association Study of Autism Spectrum Disorder in Middle Eastern Families. Genes (Basel) 2021; 12:761. [PMID: 34069769 PMCID: PMC8157263 DOI: 10.3390/genes12050761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by abnormalities in language and social communication with substantial clinical heterogeneity. Genetic factors play an important role in ASD with heritability estimated between 70% to 80%. Genome-wide association studies (GWAS) have identified multiple loci associated with ASD. However, most studies were performed on European populations and little is known about the genetic architecture of ASD in Middle Eastern populations. Here, we report the first GWAS of ASD in the Middle eastern population of Qatar. We analyzed 171 families with ASD, using linear mixed models adjusting for relatedness and other confounders. Results showed that common single nucleotide polymorphisms (SNP) in seven loci are associated with ASD (p < 1 × 10-5). Although the identified loci did not reach genome-wide significance, many of the top associated SNPs are located within or near genes that have been implicated in ASD or related neurodevelopmental disorders. These include GORASP2, GABBR2, ANKS6, THSD4, ERCC6L, ARHGEF6, and HDAC8. Additionally, three of the top associated SNPs were significantly associated with gene expression. We also found evidence of association signals in two previously reported ASD-susceptibility loci (rs10099100 and rs4299400). Our results warrant further functional studies and replication to provide further insights into the genetic architecture of ASD.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Division of Nephrology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fouad Alshaban
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha 33123, Qatar;
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
15
|
Wang T, Zhang Y, Liu L, Wang Y, Chen H, Fan T, Li J, Xia K, Sun Z. Targeted sequencing and integrative analysis of 3,195 Chinese patients with neurodevelopmental disorders prioritized 26 novel candidate genes. J Genet Genomics 2021; 48:312-323. [PMID: 33994118 DOI: 10.1016/j.jgg.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a set of complex disorders characterized by diverse and co-occurring clinical symptoms. The genetic contribution in patients with NDDs remains largely unknown. Here, we sequence 519 NDD-related genes in 3,195 Chinese probands with neurodevelopmental phenotypes and identify 2,522 putative functional mutations consisting of 137 de novo mutations (DNMs) in 86 genes and 2,385 rare inherited mutations (RIMs) with 22 X-linked hemizygotes in 13 genes, 2 homozygous mutations in 2 genes and 23 compound heterozygous mutations in 10 genes. Furthermore, the DNMs of 16,807 probands with NDDs are retrieved from public datasets and combine in an integrated analysis with the mutation data of our Chinese NDD probands by taking 3,582 in-house controls of Chinese origin as background. We prioritize 26 novel candidate genes. Notably, six of these genes - ITSN1, UBR3, CADM1, RYR3, FLNA, and PLXNA3 - preferably contribute to autism spectrum disorders (ASDs), as demonstrated by high co-expression and/or interaction with ASD genes confirmed via rescue experiments in a mouse model. Importantly, these genes are differentially expressed in the ASD cortex in a significant manner and involved in ASD-associated networks. Together, our study expands the genetic spectrum of Chinese NDDs, further facilitating both basic and translational research.
Collapse
Affiliation(s)
- Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; DIAGenes Precision Medicine, Beijing 102600, China
| | - Yi Zhang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China
| | - Liqui Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiqian Chen
- Shanghai Adeptus Biotechnology, Shanghai 200126, China
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha Hunan, 410083, China.
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China; CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai 200031, China; School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, China.
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|