1
|
Brouzou KO, Kamp D, Hensel L, Lüdtke J, Lahnakoski JM, Dukart J, Mikus N, Mathys C, Eickhoff SB, Schilbach L. Using personalised brain stimulation to modulate social cognition in adults with autism-spectrum-disorder: protocol for a randomised single-blind rTMS study. BMC Psychiatry 2025; 25:281. [PMID: 40133861 PMCID: PMC11938784 DOI: 10.1186/s12888-025-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments of social interaction and communication as well as repetitive, stereotyped behaviour. Previous research indicates that ASD without intellectual impairment is associated with underactivity and reduced functional connectivity of the brain's mentalizing pathway, to which the right temporo-parietal junction (rTPJ) serves as an important entry point and hub. In this study, we aim to utilize functional magnetic resonance imaging (fMRI) to localize activation maxima in the rTPJ and other regions involved in social cognition to generate individualized targets for neuro-navigated, intermittent theta burst stimulation (iTBS) in order to modulate brain activity in a region centrally engaged in social information processing. METHODS In this single-blind, randomized, between-subject neuroimaging-guided brain stimulation study we plan to recruit 52 participants with prediagnosed ASD and 52 controls without ASD aged between 18 and 65 years. Participants will be classified into two groups and will randomly receive one session of either verum- or sham-iTBS. Effects will be assessed by using well-established experimental tasks that interrogate social behaviour, but also use computational modelling to investigate brain stimulation effects at this level. DISCUSSION This study aims to use personalized, non-invasive brain stimulation to alter social information processing in adults with and without high-functioning ASD, which has not been studied before with a similar protocol or a sample size of this magnitude. By doing so in combination with behavioural and computational tasks, this study has the potential to provide new mechanistic insights into the workings of the social brain. TRIAL REGISTRATION German Clinical Trial Register, DRKS-ID: DRKS00028819. Registered 14 June 2022.
Collapse
Affiliation(s)
- Katia Ourania Brouzou
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Düsseldorf, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Daniel Kamp
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Düsseldorf, Germany
| | - Lukas Hensel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Düsseldorf, Germany
| | - Jana Lüdtke
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Düsseldorf, Germany
| | - Juha M Lahnakoski
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Juelich, Juelich, Germany
| | - Juergen Dukart
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Juelich, Juelich, Germany
| | - Nace Mikus
- Interacting Minds Centre, Aarhus University, Aarhus, Denmark
| | - Christoph Mathys
- Interacting Minds Centre, Aarhus University, Aarhus, Denmark
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Juelich, Juelich, Germany
| | - Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Düsseldorf, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
2
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2025; 35:126-152. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
3
|
Lazzaro G, Passarini S, Battisti A, Costanzo F, Garone G, Mercier M, D'Aiello B, De Rossi P, Valeri G, Guerrera S, Casula L, Menghini D, Vicari S, Fucà E. Understanding and targeting repetitive behaviors and restricted interests in autism spectrum disorder via high-definition transcranial direct current stimulation: a study-protocol. BMC Psychiatry 2025; 25:170. [PMID: 40001028 PMCID: PMC11863796 DOI: 10.1186/s12888-025-06506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social interaction and repetitive behaviors (RBs). Therapies specifically targeting RBs have been underexplored despite advances in understanding their neurobiological basis. This study aims to evaluate whether high-definition transcranial direct current stimulation (HD-tDCS) can reduce dysfunctional RBs in autistic children and investigate whether improvements differ between lower-order and higher-order RBs based on the brain regions stimulated. METHODS The study entails a multi-session, sham-controlled, site-controlled, double-blind, and between-subjects design. The study will include participants with an ASD diagnosis (aged 8-13 years; IQ ≥ 70), who will undergo the HD-tDCS intervention for 10 sessions. Participants will be randomly assigned to three conditions: (1) Pre-Motor Active Group (active HD-tDCS over pre-SMA cortex); (2) Frontal Active Group (active HD-tDCS over dlPFC); (3) Placebo Control Group. In the active HD-tDCS conditions, the current will be delivered through a 4 × 1 montage; small circular electrodes will be used with the cathode placed centrally with a current intensity of 0.5 mA for a total of 20 min (30 s ramp up/down) per session. Participants during the sham condition will undergo the same procedures as those in the both active conditions actual placement of electrodes, and turning on the HD-tDCS equipment (30 s). The assessment will be completed at baseline (T0), immediately after the end of the intervention (T1) and 3 months after the end of the intervention (T2). The primary outcome measure will be the Total Score of the Repetitive Behavior Scale-Revised. The secondary outcomes measures will comprise ASD symptoms, sensory processing pattern, emotional/behavioral problems, sleep functioning, parental stress, neuropsychological features and High-Density EEG connectivity. We hypothesize that active HD-tDCS will lead to significant reduction in the total score of the primary outcome compared to Sham Group, with site-specific effects on lower-order and higher-order RBs. DISCUSSION HD-tDCS is an easy-to-deliver, time-efficient, neurobiologically-driven intervention that could be performed as add-on to reduce the time of conventional therapy for ASD. Given the inherent limitations of specific interventions for RBs, tDCS represents an important "third" treatment arm to address the burden of interventions for ASD. TRIAL REGISTRATION DETAILS The trial has been registered at ClinicalTrials.gov (ID: NCT06645587). Registered 17 October 2024.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Passarini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Human Science, LUMSA University, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giacomo Garone
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Mercier
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbara D'Aiello
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pietro De Rossi
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
4
|
Kakuszi B, Szuromi B, Tóth M, Bitter I, Czobor P. Alterations in resting-state gamma-activity is adults with autism spectrum disorder: A High-Density EEG study. Psychiatry Res 2024; 339:116040. [PMID: 38901364 DOI: 10.1016/j.psychres.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a wide range of symptoms that include deficits in social cognition and difficulties with social interactions. Neural oscillations in the EEG gamma band have been proposed as an important candidate neurobiological marker of higher order cognitive processes and social interactions. We investigated resting-state gamma-activity of patients with ASD (n=23) in order to delineate alterations as compared to typically developing (TD) subjects (n=24). EEG absolute power was examined in the gamma (30-100Hz) frequency band. We found significantly reduced spectral power across the entire gamma range in the ASD group. The decrease was most pronounced over the inferior-frontal and temporo-parietal junction areas. We also found a significant decrease in gamma-activity over the dorsolateral prefrontal cortex, especially in the left side. Since these brain areas have been associated with social functioning, the reduced gamma-activity in ASD may represent a cortical dysfunction that could underlie a diminished capacity to interpret socially important information, thereby interfering with social functioning. The alterations we found may lend support for an improved diagnosis. Furthermore, they can lead to focused therapies, by targeting the dysfunctional brain activity to improve social cognitive and interaction abilities that are compromised in ASD.
Collapse
Affiliation(s)
- Brigitta Kakuszi
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary.
| | | | - Máté Tóth
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - István Bitter
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Pál Czobor
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| |
Collapse
|
5
|
Nejati V, Sharifian M, Famininejad Z, Salehinejad MA, Mahdian S. The neural structures of theory of mind are valence-sensitive: evidence from three tDCS studies. J Neural Transm (Vienna) 2024; 131:1067-1078. [PMID: 39017736 DOI: 10.1007/s00702-024-02808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Several cortical structures are involved in theory of mind (ToM), including the dorsolateral prefrontal cortex (dlPFC), the ventromedial prefrontal cortex (vmPFC), and the right temporo- parietal junction (rTPJ). We investigated the role of these regions in mind reading with respect to the valence of mental states. Sixty-five healthy adult participants were recruited and received transcranial direct current stimulation (tDCS) (1.5 mA, 20 min) with one week interval in three separate studies. The stimulation conditions were anodal tDCS over the dlPFC coupled with cathodal tDCS over the vmPFC, reversed stimulation conditions, and sham in the first study, and anodal tDCS over the vmPFC, or dlPFC, and sham stimulation, with an extracranial return electrode in the second and third study. During stimulation, participants underwent the reading mind from eyes/voice tests (RMET or RMVT) in each stimulation condition. Anodal left dlPFC/cathodal right vmPFC stimulation increased the accuracy of negative mental state attributions, anodal rTPJ decreased the accuracy of negative and neutral mental state attributions, and decreased the reaction time of positive mental state attributions. Our results imply that the neural correlates of ToM are valence-sensitive.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Sharifian
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Shahab Mahdian
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Ratsapbhayakul T, Keeratitanont K, Chonprai C, Auvichayapat N, Suphakunpinyo C, Patjanasoontorn N, Tiamkao S, Tunkamnerdthai O, Punjaruk W, Auvichayapat P. Anodal transcranial direct-current stimulation and non-verbal intelligence in autism spectrum disorder: A randomized controlled trial. Dev Med Child Neurol 2024; 66:1244-1254. [PMID: 38308445 DOI: 10.1111/dmcn.15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
AIM To understand the impact of anodal transcranial direct-current stimulation (tDCS) on non-verbal intelligence in high-functioning young adults with autism spectrum disorder (ASD). METHOD Thirty individuals with ASD were randomly divided into three groups receiving 2 mA, 20 minutes daily anodal tDCS for 10 sessions. Group A received 10 sham tDCS sessions, group B five real followed by five sham sessions, and group C received 10 real tDCS sessions. The total score of non-verbal intelligence was measured using the Test of Nonverbal Intelligence, Fourth Edition. The left dorsolateral prefrontal cortex (LDLPFC) was targeted using the International 10-20 electroencephalography system, and concurrent cognitive training was avoided. RESULTS Group C demonstrated a mean difference of 4.10 (95% confidence interval 1.41-6.79; p = 0.005) in Test of Nonverbal Intelligence scores compared with group A, with an effect size of 0.47. No significant differences were observed between groups A and B (p = 0.296), or between groups B and C (p = 0.140). INTERPRETATION Ten sessions of anodal tDCS to the LDLPFC led to improved non-verbal intelligence among individuals with ASD. These results emphasize the potential of tDCS as a discrete method for boosting cognitive abilities in the high-functioning population with ASD. Future studies with larger groups of participants and extended observation periods are necessary to validate these findings.
Collapse
Affiliation(s)
- Tinnaphat Ratsapbhayakul
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Keattichai Keeratitanont
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Radiology and Nuclear Medicine, Faculty of Medicine Burapha University, Chonburi, Thailand
| | - Chanatiporn Chonprai
- Division of Child Psychiatry, Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanyut Suphakunpinyo
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Niramol Patjanasoontorn
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Division of Child Psychiatry, Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsak Tiamkao
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orathai Tunkamnerdthai
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Punjaruk
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Molins F, Ben-Hassen Jemni N, Garrote-Petisco D, Serrano MÁ. Highly logical and non-emotional decisions in both risky and social contexts: understanding decision making in autism spectrum disorder through computational modeling. Cogn Process 2024; 25:503-512. [PMID: 38526667 PMCID: PMC11269346 DOI: 10.1007/s10339-024-01182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
In risky contexts, autism spectrum disorder (ASD) individuals exhibit more logical consistency and non-emotional decisions than do typical adults (TAs). This way of deciding could be also prevailing in social contexts, leading to maladaptive decisions. This evidence is scarce and inconsistent, and further research is needed. Recent developments in computational modeling allow analysis of decisional subcomponents that could provide valuable information to understand the decision-making and help address inconsistencies. Twenty-seven individuals with ASD and 25 TAs were submitted to a framing-task and the ultimatum game (UG). The Rescorla-Wagner computational model was used to analyze UG decisions. Results showed that in the UG, the ASD group exhibited a higher utilitarianism, characterized by lower aversion to unfairness and higher acceptance of offers. Moreover, this way of deciding was predicted by the higher economic rationality found in the framing task, where people with ASD did not manifest emotional biases such as framing effect. These results could suggest an atypical decision making, highly logical and non-emotional, as a robust feature of ASD.
Collapse
Affiliation(s)
- Francisco Molins
- Department of Psychobiology, Universitat de València, Av. Blasco Ibáñez, 13, 46010, Valencia, Spain
| | - Nour Ben-Hassen Jemni
- Department of Psychobiology, Universitat de València, Av. Blasco Ibáñez, 13, 46010, Valencia, Spain
| | - Dolores Garrote-Petisco
- Department of Psychobiology, Universitat de València, Av. Blasco Ibáñez, 13, 46010, Valencia, Spain
| | - Miguel Ángel Serrano
- Department of Psychobiology, Universitat de València, Av. Blasco Ibáñez, 13, 46010, Valencia, Spain.
| |
Collapse
|
8
|
Lodewyk K, Bagnell A, MacMaster FP, Newton AS. Adverse event monitoring and reporting in pediatric neuromodulatory studies: A systematic review. J Psychiatr Res 2024; 175:359-367. [PMID: 38761518 DOI: 10.1016/j.jpsychires.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Neuromodulatory interventions are relatively novel and approaches to studying harms and tolerability have varied. Using a checklist based on guidelines from Good Clinical Practice and the Harms Extension of the CONSORT (Consolidated Standards of Reporting Trials) Statement, we identified how adverse events are measured, assessed, and reported in studies evaluating neuromodulation for the treatment of mental and neurodevelopmental disorders among children and adolescents. A systematic literature review identified 56 experimental and quasi-experimental studies evaluating transcranial magnetic stimulation (TMS), transcranial alternating (tACS) or direct (tDCS) current stimulation, transcranial pulse stimulation (TPS), and vagus or trigeminal nerve stimulation (VNS or TNS). For 22 studies (39%), the types of adverse events to be monitored were identified, and for 31 studies (55%), methods for collecting adverse event data were described. Methods for assessing adverse events were less commonly described with 23 studies (41%) having details on assessing event severity, and 11 studies (20%) having details on assessing event causality. Among 31 studies with reported results, headache, skin irritation, and general pain or discomfort were the most reported across studies. Seizure, untoward medical occurrences, and intracranial bleeding, edema, or other intracranial pathology were considered serious events, but these events were not reported as occurring in any results-based papers. Taken together, the findings from this review indicate that most studies of pediatric neuromodulatory interventions did not include descriptions of adverse event monitoring and evaluation. Comprehensive event monitoring and reporting across studies can significantly augment the current knowledge base.
Collapse
Affiliation(s)
- Kalee Lodewyk
- University of Alberta, 3-526 Edmonton Clinic Health Academy, 11405 - 87 Avenue, Edmonton, Alberta, T6G 1C9, Canada.
| | - Alexa Bagnell
- IWK Health, 5980 University Ave #5850, Halifax, Nova Scotia, B3K 6R8, Canada.
| | - Frank P MacMaster
- IWK Health, 5980 University Ave #5850, Halifax, Nova Scotia, B3K 6R8, Canada.
| | - Amanda S Newton
- Department of Pediatrics, University of Alberta, 3-526 Edmonton Clinic Health Academy, 11405 - 87 Avenue, Edmonton, Alberta, T6G 1C9, Canada.
| |
Collapse
|
9
|
Gurr C, Splittgerber M, Puonti O, Siemann J, Luckhardt C, Pereira HC, Amaral J, Crisóstomo J, Sayal A, Ribeiro M, Sousa D, Dempfle A, Krauel K, Borzikowsky C, Brauer H, Prehn-Kristensen A, Breitling-Ziegler C, Castelo-Branco M, Salvador R, Damiani G, Ruffini G, Siniatchkin M, Thielscher A, Freitag CM, Moliadze V, Ecker C. Neuroanatomical Predictors of Transcranial Direct Current Stimulation (tDCS)-Induced Modifications in Neurocognitive Task Performance in Typically Developing Individuals. J Neurosci 2024; 44:e1372232024. [PMID: 38548336 PMCID: PMC11140687 DOI: 10.1523/jneurosci.1372-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 05/31/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.
Collapse
Affiliation(s)
- Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
| | - Julia Siemann
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Helena C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Amaral
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Mário Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Daniela Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena- Magdeburg, Magdeburg 39120, Germany
| | - Christoph Borzikowsky
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | | | | | | | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| |
Collapse
|
10
|
Oberman LM, Francis SM, Lisanby SH. The use of noninvasive brain stimulation techniques in autism spectrum disorder. Autism Res 2024; 17:17-26. [PMID: 37873560 PMCID: PMC10841888 DOI: 10.1002/aur.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have recently emerged as alternative, nonpharmacological interventions for a variety of psychiatric, neurological, and neurodevelopmental conditions. NIBS is beginning to be applied in both research and clinical settings for the treatment of core and associated symptoms of autism spectrum disorder (ASD) including social communication deficits, restricted and repetitive behaviors, irritability, hyperactivity, depression and impairments in executive functioning and sensorimotor integration. Though there is much promise for these targeted device-based interventions, in other disorders (including adult major depressive disorder (MDD) and obsessive compulsive disorder (OCD) where rTMS is FDA cleared), data on the safety and efficacy of these interventions in individuals with ASD is limited especially in younger children when neurodevelopmental interventions typically begin. Most studies are open-label, small scale, and/or focused on a restricted subgroup of individuals with ASD. There is a need for larger, randomized controlled trials that incorporate neuroimaging in order to develop predictive biomarkers of treatment response and optimize treatment parameters. We contend that until such studies are conducted, we do not have adequate estimates of the safety and efficacy of NIBS interventions in children across the spectrum. Thus, broad off-label use of these techniques in this population is not supported by currently available evidence. Here we discuss the existing data on the use of NIBS to treat symptoms related to ASD and discuss future directions for the field.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Saito K, Koike K, Takeuchi K, Otsuru N, Onishi H. The effects of transcranial electrical stimulation of the left dorsolateral prefrontal cortex on tactile spatial discrimination performance. Behav Brain Res 2023; 452:114600. [PMID: 37499909 DOI: 10.1016/j.bbr.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The dorsolateral prefrontal cortex (DLPFC) plays a key role in tactile perceptual discrimination performance. Both transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) have been shown to modulate neural activity in cortical regions. In this study, we aimed to determine whether tRNS and anodal tPCS over the left DLPFC would improve tactile perceptual discrimination performance of the right index finger in healthy neurological individuals. Subjects underwent a grating orientation task before, immediately after, and 30 min after applying tRNS in Experiment 1 or anodal tPCS in Experiment 2. tRNS application on the left DLPFC tended to enhance tactile perceptual discrimination performance. In contrast, the application of anodal tPCS over the left DLPFC did not affect tactile perceptual discrimination performance. These findings indicate that transcranial electrical stimulation to the left DLPFC may improve tactile perceptual discrimination performance, with effects that depend on stimulus modality.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kotaro Koike
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kota Takeuchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
12
|
Duvall L, May KE, Waltz A, Kana RK. The neurobiological map of theory of mind and pragmatic communication in autism. Soc Neurosci 2023; 18:191-204. [PMID: 37724352 DOI: 10.1080/17470919.2023.2242095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 09/20/2023]
Abstract
Children with autism often have difficulty with Theory of Mind (ToM), the ability to infer mental states, and pragmatic skills, the contextual use of language. Neuroimaging research suggests ToM and pragmatic skills overlap, as the ability to understand another's mental state is a prerequisite to interpersonal communication. To our knowledge, no study in the last decade has examined this overlap further. To assess the emerging consensus across neuroimaging studies of ToM and pragmatic skills in autism, we used coordinate-based activation likelihood estimation (ALE) analysis of 35 functional magnetic resonance imaging (MRI) studies (13 pragmatic skills, 22 ToM), resulting in a meta-analysis of 1,295 participants (647 autistic, 648 non-autistic) aged 7 to 49 years. Group difference analysis revealed decreased left inferior frontal gyrus (LIFG) activation in autistic participants during pragmatic skills tasks. For ToM tasks, we found reduced anterior cingulate cortex (ACC), medial prefrontal cortex (MPFC), and temporoparietal junction (TPJ) activation in autistic participants. Collectively, both ToM and pragmatic tasks showed activation in IFG and superior temporal gyrus (STG) and a reduction in left hemispheric activation in autistic participants. Overall, the findings underscore the cognitive and neural processing similarities between ToM and pragmatic skills, and their underlying neurobiological differences in autism.
Collapse
Affiliation(s)
- Lauren Duvall
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kaitlyn E May
- Department of Educational Studies in Psychology, Research Methodologies, and Counseling, University of Alabama, Tuscaloosa, AL,USA
| | - Abby Waltz
- Department of Psychology & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| | - Rajesh K Kana
- Department of Psychology & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
13
|
Catoira B, Van Overwalle F, Van Schuerbeek P, Raeymaekers H, Heleven E, Baetens K, Deroost N, Baeken C. The effects of stimulating the cerebellum on social sequences: A tDCS-fMRI pilot study: Los efectos de estimular el cerebelo en secuencias sociales: Un estudio piloto con tDCS y fMRI. Int J Clin Health Psychol 2023; 23:100373. [PMID: 36793338 PMCID: PMC9922820 DOI: 10.1016/j.ijchp.2023.100373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Research on the involvement of the cerebellum in social behavior and its relationship with social mentalizing has just begun. Social mentalizing is the ability to attribute mental states such as desires, intentions, and beliefs to others. This ability involves the use of social action sequences which are believed to be stored in the cerebellum. In order to better understand the neurobiology of social mentalizing, we applied cerebellar transcranial direct current stimulation (tDCS) on 23 healthy participants in the MRI scanner, immediately followed by measuring their brain activity during a task that required to generate the correct sequence of social actions involving false (i.e., outdated) and true beliefs, social routines and non-social (control) events. The results revealed that stimulation decreased task performance along with decreased brain activation in mentalizing areas, including the temporoparietal junction and the precuneus. This decrease was strongest for true belief sequences compared to the other sequences. These findings support the functional impact of the cerebellum on the mentalizing network and belief mentalizing, contributing to the understanding of the role of the cerebellum in social sequences.
Collapse
Affiliation(s)
- Beatriz Catoira
- Department of Psychiatry (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chris Baeken
- Department of Psychiatry (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
14
|
Liu A, Gong C, Wang B, Sun J, Jiang Z. Non-invasive brain stimulation for patient with autism: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1147327. [PMID: 37457781 PMCID: PMC10338880 DOI: 10.3389/fpsyt.2023.1147327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To comprehensively evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with autism spectrum disorder (ASD) in randomized controlled trials (RCT), providing a reference for future research on the same topic. Methods Five databases were searched (Pubmed, Web of Science, Medline, Embase, and Cochrane library) and tracked relevant references, Meta-analysis was performed using RevMan 5.3 software. Results Twenty-two references (829 participants) were included. The results of the meta-analysis showed that NIBS had positive effects on repetitive and stereotypical behaviors, cognitive function, and executive function in autistic patients. Most of the included studies had a moderate to high risk of bias, Mainly because of the lack of blinding of subjects and assessors to treatment assignment, as well as the lack of continuous observation of treatment effects. Conclusion Available evidence supports an improvement in some aspects of NIBS in patients with ASD. However, due to the quality of the original studies and significant publication bias, this evidence must be treated with caution. Further large multicenter randomized double-blind controlled trials and appropriate follow-up observations are needed to further evaluate the specific efficacy of NIBS in patients with ASD.
Collapse
Affiliation(s)
- Annan Liu
- Jiamusi University Affiliated No.3 Hospital, Jiamusi, China
| | - Chao Gong
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Bobo Wang
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Jiaxing Sun
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Zhimei Jiang
- Jiamusi University College of Rehabilitation Medicine, Jiamusi, Heilongjiang, China
| |
Collapse
|
15
|
Cong J, Zhuang W, Liu Y, Yin S, Jia H, Yi C, Chen K, Xue K, Li F, Yao D, Xu P, Zhang T. Altered default mode network causal connectivity patterns in autism spectrum disorder revealed by Liang information flow analysis. Hum Brain Mapp 2023; 44:2279-2293. [PMID: 36661190 PMCID: PMC10028659 DOI: 10.1002/hbm.26209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe cognitive impairment in social communication and interaction. Previous studies have reported that abnormal functional connectivity patterns within the default mode network (DMN) were associated with social dysfunction in ASD. However, how the altered causal connectivity pattern within the DMN affects the social functioning in ASD remains largely unclear. Here, we introduced the Liang information flow method, widely applied to climate science and quantum mechanics, to uncover the brain causal network patterns in ASD. Compared with the healthy controls (HC), we observed that the interactions among the dorsal medial prefrontal cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and temporo-parietal junction showed more inter-regional causal connectivity differences in ASD. For the topological property analysis, we also found the clustering coefficient of DMN and the In-Out degree of anterior medial prefrontal cortex were significantly decreased in ASD. Furthermore, we found that the causal connectivity from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These altered causal connectivity patterns indicated that the DMN inter-regions information processing was perturbed in ASD. In particular, we found that the dMPFC acts as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Overall, our findings indicated that the Liang information flow method could serve as an important way to explore the DMN causal connectivity patterns, and it also can provide novel insights into the nueromechanisms underlying DMN dysfunction in ASD.
Collapse
Affiliation(s)
- Jing Cong
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Wenwen Zhuang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Yunhong Liu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Shunjie Yin
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Hai Jia
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Kaiqing Xue
- School of Computer and Software Engineering, Xihua University, Chengdu, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| |
Collapse
|
16
|
Xiao L, Huo X, Wang Y, Li W, Li M, Wang C, Wang F, Sun T. A bibliometric analysis of global research status and trends in neuromodulation techniques in the treatment of autism spectrum disorder. BMC Psychiatry 2023; 23:183. [PMID: 36941549 PMCID: PMC10026211 DOI: 10.1186/s12888-023-04666-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease which has risen to become the main cause of childhood disability, placing a heavy burden on families and society. To date, the treatment of patients with ASD remains a complicated problem, for which neuromodulation techniques are a promising solution. This study analyzed the global research situation of neuromodulation techniques in the treatment of ASD from 1992 to 2022, aiming to explore the global research status and frontier trends in this field. METHODS The Web of Science (WoS) was searched for literature related to neuromodulation techniques for ASD from 1992 to October 2022. A knowledge atlas to analyze collaboration among countries, institutions, authors, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and burst keywords was constructed using Rstudio software, CiteSpace, and VOSviewer. RESULTS In total, 392 publications related to the treatment of ASD using neuromodulation techniques were included. Despite some fluctuations, the number of publications in this field has shown a growing trend in recent years. The United States and Deakin University are the leading country and institution in this field, respectively. The greatest contributing authors are Peter G Enticott, Manuel F Casanova, and Paul B Fitzgerald et al. The most prolific and cited journal is Brain Stimulation and the most commonly co-cited journal is The Journal of Autism and Developmental Disorders. The most frequently cited article was that of Simone Rossi (Safety, ethical considerations, and application guidelines for the use of transverse magnetic stimulation in clinical practice and research, 2009). "Obsessive-compulsive disorder," "transcranial direct current stimulation," "working memory," "double blind" and "adolescent" were identified as hotspots and frontier trends of neuromodulation techniques in the treatment of ASD. CONCLUSION The application of neuromodulation techniques for ASD has attracted the attention of researchers worldwide. Restoring the social ability and improving the comorbid symptoms in autistic children and adults have always been the focus of research. Neuromodulation techniques have demonstrated significant advantages and effects on these issues. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are new therapeutic methods introduced in recent years, and are also directions for further exploration.
Collapse
Affiliation(s)
- Lifei Xiao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Chaofan Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China.
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China.
| |
Collapse
|
17
|
Kang J, Fan X, Zhong Y, Casanova MF, Sokhadze EM, Li X, Niu Z, Geng X. Transcranial Direct Current Stimulation Modulates EEG Microstates in Low-Functioning Autism: A Pilot Study. Bioengineering (Basel) 2023; 10:98. [PMID: 36671670 PMCID: PMC9855011 DOI: 10.3390/bioengineering10010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder that affects several behavioral domains of neurodevelopment. Transcranial direct current stimulation (tDCS) is a new method that modulates motor and cognitive function and may have potential applications in ASD treatment. To identify its potential effects on ASD, differences in electroencephalogram (EEG) microstates were compared between children with typical development (n = 26) and those with ASD (n = 26). Furthermore, children with ASD were divided into a tDCS (experimental) and sham stimulation (control) group, and EEG microstates and Autism Behavior Checklist (ABC) scores before and after tDCS were compared. Microstates A, B, and D differed significantly between children with TD and those with ASD. In the experimental group, the scores of microstates A and C and ABC before tDCS differed from those after tDCS. Conversely, in the control group, neither the EEG microstates nor the ABC scores before the treatment period (sham stimulation) differed from those after the treatment period. This study indicates that tDCS may become a viable treatment for ASD.
Collapse
Affiliation(s)
- Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding 071000, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Manuel F. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Estate M. Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| |
Collapse
|
18
|
Vicario CM, Martino G. Psychology and technology: how Virtual Reality can boost psychotherapy and neurorehabilitation. AIMS Neurosci 2022; 9:454-459. [PMID: 36660073 PMCID: PMC9826745 DOI: 10.3934/neuroscience.2022025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- C. M. Vicario
- COSPECS Department, University of Messina, 98122 Messina, Italy,* Correspondence:
| | - G. Martino
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy,* Correspondence:
| |
Collapse
|
19
|
Zemestani M, Hoseinpanahi O, Salehinejad MA, Nitsche MA. The impact of prefrontal transcranial direct current stimulation (tDCS) on theory of mind, emotion regulation and emotional-behavioral functions in children with autism disorder: A randomized, sham-controlled, and parallel-group study. Autism Res 2022; 15:1985-2003. [PMID: 36069668 DOI: 10.1002/aur.2803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Advances in our knowledge about the neuropsychological mechanisms underlying core deficits in autism spectrum disorder (ASD) have produced several novel treatment modalities. One of these approaches is modulation of activity of the brain regions involved in ASD symptoms. This study examined the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) on autism symptom severity, theory of mind, emotion regulation strategies, and emotional-behavioral functions in children with ASD. Thirty-two children (Mage = 10.16, SD = 1.93, range 7-12 years) diagnosed with ASD were randomly assigned to active (N = 17) or sham stimulation (N = 15) groups in a randomized, sham-controlled, parallel-group design. Participants underwent 10 sessions of active (1.5 mA, 15 min, bilateral left anodal/right cathodal DLPFC, 2 sessions per week) or sham tDCS. Autism symptom severity, theory of mind, emotion regulation strategies, and emotional-behavioral functioning of the patients were assessed at baseline, immediately after the intervention, and 1 month after the intervention. A significant improvement of autism symptom severity (i.e., communication), theory of mind (i.e., ToM 3), and emotion regulation strategies was observed for the active as compared to the sham stimulation group at the end of the intervention, and these effects were maintained at the one-month follow-up. The results suggest that repeated tDCS with anodal stimulation of left and cathodal stimulation of right DLPFC improves autism symptom severity as well as social cognition and emotion regulation in ASD.
Collapse
Affiliation(s)
- Mehdi Zemestani
- Department of Psychology, University of Kurdistan, Sanandaj, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
20
|
Salehinejad MA, Ghanavati E, Glinski B, Hallajian AH, Azarkolah A. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav 2022; 12:e2724. [PMID: 35938945 PMCID: PMC9480913 DOI: 10.1002/brb3.2724] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Among the target groups in child and adolescent psychiatry, transcranial direct current stimulation (tDCS) has been more applied in neurodevelopmental disorders specifically, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and dyslexia. This systematic review aims to provide the latest update on published randomized-controlled trials applying tDCS in these disorders for evaluating its efficacy and safety. METHODS Based on a pre-registered protocol (PROSPERO: CRD42022321430) and using the PRISMA approach, a literature search identified 35 randomized controlled trials investigating the effects of tDCS on children and adolescents with ADHD (n = 17), ASD (n = 11), and dyslexia (n = 7). RESULTS In ADHD, prefrontal anodal tDCS is reported more effective compared to stimulation of the right inferior frontal gyrus. Similarly in ASD, prefrontal anodal tDCS was found effective for improving behavioral problems. In dyslexia, stimulating temporoparietal regions was the most common and effective protocol. In ASD and dyslexia, all tDCS studies found an improvement in at least one of the outcome variables while 64.7% of studies (11 of 17) in ADHD found a similar effect. About 88% of all tDCS studies with a multi-session design in 3 disorders (16 of 18) reported a significant improvement in one or all outcome variables after the intervention. Randomized, double-blind, controlled trials consisted of around 70.5%, 36.3%, and 57.1% of tDCS studies in ADHD, ASD, and dyslexia, respectively. tDCS was found safe with no reported serious side effects in 6587 sessions conducted on 745 children and adolescents across 35 studies. CONCLUSION tDCS was found safe and partially effective. For evaluation of clinical utility, larger randomized controlled trials with a double-blind design and follow-up measurements are required. Titration studies that systematically evaluate different stimulation intensities, duration, and electrode placement are lacking.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Benedikt Glinski
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | | | - Anita Azarkolah
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Atieh Clinical Neuroscience Center, Tehran, Iran
| |
Collapse
|
21
|
Saito K, Otsuru N, Inukai Y, Kojima S, Miyaguchi S, Nagasaka K, Onishi H. Effect of Transcranial Electrical Stimulation over the Posterior Parietal Cortex on Tactile Spatial Discrimination Performance. Neuroscience 2022; 494:94-103. [PMID: 35569646 DOI: 10.1016/j.neuroscience.2022.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
The intraparietal sulcus region, which is part of the posterior parietal cortex (PPC), has been shown to play an important role in discriminating object shapes using the fingers. Transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) are noninvasive strategies widely used to modulate neural activity in cortical regions. Therefore, we investigated the effects of tRNS and anodal tPCS applied to left or right PPC on the tactile discrimination performance of the right index finger in 20 neurologically healthy subjects. A grating orientation task (GOT) was performed before and immediately after delivering tRNS (stimulus frequency 0.1-640 Hz) in Experiment 1 or anodal tPCS (pulse width 50 ms and inter-pulse interval 5 ms) in Experiment 2. Performing tRNS over the right PPC significantly improved discrimination performance on the GOT. Subjects were classified into low and high baseline performance groups. Conducting tRNS over the left PPC significantly reduced the GOT discrimination performance in the high-performance group. By contrast, anodal tPCS delivered to the PPC of the left and right hemispheres had no significant effect on the tactile GOT discrimination performance of the right hand. We show that transcranial electric stimulation over the PPC may improve tactile perception but the effect depends on stimulus modality, parameters, and on the stimulated hemisphere.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kazuaki Nagasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
22
|
Neuromodulation of facial emotion recognition in health and disease: A systematic review. Neurophysiol Clin 2022; 52:183-201. [DOI: 10.1016/j.neucli.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
|
23
|
Zhang J, Zhang H. Effects of non-invasive neurostimulation on autism spectrum disorder: A systematic review. Front Psychiatry 2022; 13:989905. [PMID: 36405911 PMCID: PMC9666381 DOI: 10.3389/fpsyt.2022.989905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
UNLABELLED Non-invasive neurostimulation techniques (NIBS) have shown benefits in psychiatric conditions. While in ASD patients, no guideline has so-far been recommended on these techniques due to a lack of high-quality synthetic evidence. Here, a comprehensive search from database inception onward was conducted in PubMed, EMBASE, and Cochrane library. Sham-controlled studies assessing the effects of NIBS in ASD patients were identified. After screening, twenty-two studies were included. A total of 552 patients were involved, and the sample size ranged from 5 to 78 patients. Although an iteration from exploratory attempts to more strictly designed trials has been seen to evaluate the efficacy of NIBS on ASD, further trials should also be needed to enable the clinicians and researchers to reach any consensus. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021292434], identifier [CRD42021292434].
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China.,Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China.,Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.,Cheeloo College of Medicine, Shandong University, Jinan, China.,University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
24
|
Padrón I, García-Marco E, Moreno I, Birba A, Silvestri V, León I, Álvarez C, López J, de Vega M. Multisession Anodal tDCS on the Right Temporo-Parietal Junction Improves Mentalizing Processes in Adults with Autistic Traits. Brain Sci 2021; 12:brainsci12010030. [PMID: 35053774 PMCID: PMC8773564 DOI: 10.3390/brainsci12010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Persons with autism spectrum disorder (ASD) have impaired mentalizing skills. In this study, a group of persons with ASD traits (high-AQ scores) initially received sham tDCS before completing a pre-test in two mentalizing tasks: false belief and self-other judgments. Over the next week, on four consecutive days, they received sessions of anodal electrical stimulation (a-tDCS) over the right temporo-parietal junction (rTPJ), a region frequently associated with the theory of mind. On the last day, after the stimulation session, they completed a new set of mentalizing tasks. A control group (with low-AQ scores) matched in age, education and intelligence received just sham stimulation and completed the same pre-test and post-test. The results showed that the high-AQ group improved their performance (faster responses), after a-tDCS, in the false belief and in the self-other judgments of mental features, whereas they did not change performance in the false photographs or the self-other judgments of physical features. These selective improvements cannot be attributed to increased familiarity with the tasks, because the performance of the low-AQ control group remained stable about one week later. Therefore, our study provides initial proof that tDCS could be used to improve mentalizing skills in persons with ASD traits.
Collapse
Affiliation(s)
- Iván Padrón
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Enrique García-Marco
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, 38300 La Orotava, Spain
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Iván Moreno
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Valentina Silvestri
- Department of Psychology, University of Milan-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy;
| | - Inmaculada León
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Carlos Álvarez
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Joana López
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
- Department of Psychology, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK
| | - Manuel de Vega
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
- Correspondence: ; Tel.: +34-630027293
| |
Collapse
|
25
|
Are We Right about the Right TPJ? A Review of Brain Stimulation and Social Cognition in the Right Temporal Parietal Junction. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the past decade, the functional role of the TPJ (Temporal Parietal Junction) has become more evident in terms of its contribution to social cognition. Studies have revealed the TPJ as a ‘distinguisher’ of self and other with research focused on non-clinical populations as well as in individuals with Autism and Type I Schizophrenia. Further research has focused on the integration of self-other distinctions with proprioception. Much of what we now know about the causal role of the right TPJ derives from TMS (Transcranial Magnetic Stimulation), rTMS repetitive Transcranial Magnetic Stimulation), and tDCS (transcranial Direct Cortical Stimulation). In this review, we focus on the role of the right TPJ as a moderator of self, which is integrated and distinct from ‘other’ and how brain stimulation has established the causal relationship between the underlying cortex and agency.
Collapse
|