1
|
Wang W, Wang Y, Chi J, Tan X, Hu J, Ma X, Sun X, Che K, Lv W, Wang Y. hUCMSCs carrying exenatide prevent T1DM by improving intestinal microflora composition and islet tissue damage repair. Mol Med 2022; 28:155. [PMID: 36514009 PMCID: PMC9746121 DOI: 10.1186/s10020-022-00526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Exenatide is a stable analogue of glucagon-like peptide 1 that can reduce postprandial hyperglycemia and has been utilized as adjunctive therapy for type 1 diabetes mellitus (T1DM). The human umbilical cord is a rich source of MSCs, and human umbilical cord mesenchymal stem cells (hUCMSCs) also show potential to enhance insulin secretion. Here, we aimed to explore the effects of hUCMSCs carrying exenatide in T1DM and further identify the possible mechanisms involved. METHODS hUCMSCs were isolated from human umbilical cord tissues, identified, and transduced with recombinant lentivirus carrying exenatide to obtain exenatide-carrying hUCMSCs (hUCMSCs@Ex-4). RESULTS The results showed that hUCMSCs@Ex-4 restored the blood glucose levels and body weight of NOD mice, and repressed immune cell infiltration and islet tissue changes. Additionally, in T1DM mice, treatment with hUCMSCs@Ex-4 reduced the blood glucose levels and promoted repair of islet tissue damage. Moreover, hUCMSCs@Ex-4 attenuated renal tissue lesions in T1DM mice. Applying bioinformatic analysis, the effects of hUCMSCs@Ex-4 were suggested to correlate with decreased abundance of pro-inflammatory intestinal bacteria and increased abundance of anti-inflammatory intestinal bacteria. CONCLUSION Overall, the study indicated that hUCMSCs carrying exenatide might improve beneficial intestinal microflora abundance and promote islet tissue damage repair, thereby alleviating T1DM.
Collapse
Affiliation(s)
- Wei Wang
- grid.412521.10000 0004 1769 1119Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000 People’s Republic of China
| | - Yahao Wang
- grid.410645.20000 0001 0455 0905Medical College, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Jingwei Chi
- grid.412521.10000 0004 1769 1119Key Laboratory of Thyroid Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000 People’s Republic of China
| | - Xiaojun Tan
- grid.510325.0Department of Endocrinology, Yidu Central Hospital of Weifang City, Weifang, 261000 People’s Republic of China
| | - Jianxia Hu
- grid.412521.10000 0004 1769 1119The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, 266000 People’s Republic of China
| | - Xiaolong Ma
- grid.415912.a0000 0004 4903 149XDepartment of Endocrinology, Liaocheng People’s Hospital, Liaocheng, 252000 People’s Republic of China
| | - Xiaofang Sun
- grid.412521.10000 0004 1769 1119Department of Endocrinology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, South District, Qingdao, 266000 Shandong People’s Republic of China
| | - Kui Che
- grid.412521.10000 0004 1769 1119Key Laboratory of Thyroid Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000 People’s Republic of China
| | - Wenshan Lv
- grid.412521.10000 0004 1769 1119Department of Endocrinology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, South District, Qingdao, 266000 Shandong People’s Republic of China
| | - Yangang Wang
- grid.412521.10000 0004 1769 1119Department of Endocrinology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, South District, Qingdao, 266000 Shandong People’s Republic of China
| |
Collapse
|
2
|
Shaikh MS, Shahzad Z, Tash EA, Janjua OS, Khan MI, Zafar MS. Human Umbilical Cord Mesenchymal Stem Cells: Current Literature and Role in Periodontal Regeneration. Cells 2022; 11:cells11071168. [PMID: 35406732 PMCID: PMC8997495 DOI: 10.3390/cells11071168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Periodontal disease can cause irreversible damage to tooth-supporting tissues such as the root cementum, periodontal ligament, and alveolar bone, eventually leading to tooth loss. While standard periodontal treatments are usually helpful in reducing disease progression, they cannot repair or replace lost periodontal tissue. Periodontal regeneration has been demonstrated to be beneficial in treating intraosseous and furcation defects to varied degrees. Cell-based treatment for periodontal regeneration will become more efficient and predictable as tissue engineering and progenitor cell biology advance, surpassing the limitations of present therapeutic techniques. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into several cell types when stimulated. Mesenchymal stem cells (MSCs) have been tested for periodontal regeneration in vitro and in humans, with promising results. Human umbilical cord mesenchymal stem cells (UC-MSCs) possess a great regenerative and therapeutic potential. Their added benefits comprise ease of collection, endless source of stem cells, less immunorejection, and affordability. Further, their collection does not include the concerns associated with human embryonic stem cells. The purpose of this review is to address the most recent findings about periodontal regenerative mechanisms, different stem cells accessible for periodontal regeneration, and UC-MSCs and their involvement in periodontal regeneration.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Zara Shahzad
- Lahore Medical and Dental College, University of Health Sciences, Lahore 53400, Pakistan;
| | - Esraa Abdulgader Tash
- Department of Oral and Clinical Basic Science, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia;
| | - Omer Sefvan Janjua
- Department of Maxillofacial Surgery, PMC Dental Institute, Faisalabad Medical University, Faisalabad 38000, Pakistan;
| | | | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
- Correspondence: ; Tel.: +966-507544691
| |
Collapse
|
3
|
Alatyyat SM, Alasmari HM, Aleid OA, Abdel-Maksoud MS, Elsherbiny N. Umbilical cord stem cells: Background, processing and applications. Tissue Cell 2020; 65:101351. [PMID: 32746993 DOI: 10.1016/j.tice.2020.101351] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
Stem cells have currently gained attention in the field of medicine not only due to their ability to repair dysfunctional or damaged cells, but also they could be used as drug delivery system after being engineered to do so. Human umbilical cord is attractive source for autologous and allogenic stem cells that are currently amenable to treatment of various diseases. Human umbilical cord stem cells are -in contrast to embryonic and fetal stem cells- ethically noncontroversial, inexpensive and readily available source of cells. Umbilical cord, umbilical cord vein, amnion/placenta and Wharton's jelly are all rich of many types of multipotent stem cell populations capable of forming many different cell types. This review will focus on umbilical cord stem cells processing and current application in medicine.
Collapse
Affiliation(s)
- Shumukh M Alatyyat
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Houton M Alasmari
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Omamah A Aleid
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Amer MG, Embaby AS, Karam RA, Amer MG. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus. Gene 2018; 654:87-94. [PMID: 29452233 DOI: 10.1016/j.gene.2018.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Generation of new β cells is an important approach in the treatment of type 1 diabetes mellitus (type 1 DM). Adipose tissue-derived stem cells (ADSCs) might be one of the best sources for cell replacement therapy for diabetes. Therefore, this work aimed to test the possible role of transplanted insulin-producing cells (IPCs) differentiated from ADSCs in treatment of streptozotocin (STZ) induced type I DM in rats. Type 1 DM was induced by single intra peritoneal injection with STZ (50 mg/kg BW). Half of the diabetic rats were left without treatment and the other half were injected with differentiated IPCs directly into the pancreas. ADSCs were harvested, cultured and identified by testing their phenotypes through flow cytometry. They were further subjected to differentiation into IPCs using differentiation medium. mRNA expression of pancreatic transcription factors (pdx1), insulin and glucose transporter-2 genes by real time PCR was done to detect the cellular differentiation and confirmed by stimulated insulin secretion. The pancreatic tissues from all groups were examined 2 months after IPC transplantation and were subjected to histological, Immunohistochemical and morphometric study. The differentiated IPCs showed significant expression of pancreatic β cell markers and insulin secretion in glucose dependent manner. Treatment with IPCs induced apparent regeneration, diffused proliferated islet cells and significant increase in C-peptide immune reaction. We concluded that transplantation of differentiated IPCs improved function and morphology of Islet cells in diabetic rats. Consequently, this therapy option may be a promising therapeutic approach to patient with type 1 DM if proven to be effective and safe.
Collapse
Affiliation(s)
- Mona G Amer
- Histology & Cell Biology, Faculty of Medicine, Zagazig University, Egypt; Anatomy and histology department, College of medicine, Taif University, Saudi Arabia
| | - Azza S Embaby
- Histology & Cell Biology, Faculty of Medicine, Beni-Sueif University, Egypt
| | - Rehab A Karam
- Medical Biochemistry, Faculty of Medicine, Zagazig University, Egypt.
| | - Marwa G Amer
- Clinical pathology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
5
|
Wu D, Zou S, Chen H, Li X, Xu Y, Zuo Q, Pan Y, Jiang SW, Huang H, Sun L. Transplantation routes affect the efficacy of human umbilical cord mesenchymal stem cells in a rat GDM model. Clin Chim Acta 2017; 475:137-146. [PMID: 29050787 DOI: 10.1016/j.cca.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 02/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is harmful to both the mother and fetus. Although transplantation of human umbilical cord mesenchymal stem cells (HUMSCs) could be a useful therapy for GDM, the influences of different transplantation routes on the therapeutic effects remain unclear. In this study, we isolated and cultured the HUMSCs for transplantation, and the biological activity of HUMSCs was verified by flow cytometric analysis (the positive markers, CD44, CD73, CD105 and CD90, the negative markers, CD45, CD34, CD19, HLA-DR, and CD11b) and potency of osteogenic, adipogenic and chondrogenic differentiation. Streptozotocin (STZ)-induced diabetes mellitus (DM)/GDM rats were transplanted with HUMSCs by different routes: single or multiple tail vein injection, liver parenchyma, and renal capsule transplantation. These were compared to positive controls (STZ-induced, untreated) and negative controls (non-induced, untreated) to determine the effect of the transplant on the control of DM/GDM. The blood glucose level and body weight of rats in each group were determined and showed different effects. Transplantation of HUMSCs to GDM rats can increase the number of offspring in comparison to the negative controls. The weight of the offspring in the transplantation groups also increased due to the therapeutic effect of HUMSCs. Based on results, we concluded that transplanting HUMSCs could effectively alleviate the symptoms of elevated blood glucose and weight loss and improve the body weight and survival rate of offspring. Injections of HUMSCs were required to persistently decrease the blood glucose of DM and GDM rats. Transplanting HUMSCs into the liver or renal capsule of GDM rats led to a similar efficiency of controlling blood glucose and compensation for body weight. HUMSCs therapy increased the number and body weight of offspring and improved their activity. In summary, this study has enabled progress toward determining the optimal route for GDM therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers/metabolism
- Blood Glucose/metabolism
- Body Weight
- Cell Differentiation
- Cord Blood Stem Cell Transplantation/methods
- Diabetes, Gestational/chemically induced
- Diabetes, Gestational/metabolism
- Diabetes, Gestational/pathology
- Diabetes, Gestational/therapy
- Disease Models, Animal
- Female
- Gene Expression
- HLA-DR Antigens/genetics
- HLA-DR Antigens/metabolism
- Humans
- Infusions, Intravenous
- Kidney
- Litter Size
- Liver
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/physiology
- Pregnancy
- Primary Cell Culture
- Rats
- Rats, Sprague-Dawley
- Streptozocin
- Transplantation, Heterologous/methods
- Transplantation, Heterotopic/methods
- Umbilical Cord/cytology
- Umbilical Cord/physiology
Collapse
Affiliation(s)
- Dan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shan Zou
- Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Xiaoyan Li
- Wuxi Maternal and Child Health Hospital, Jiangsu Province, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Huan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
6
|
Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook. Mol Biotechnol 2015; 57:589-605. [DOI: 10.1007/s12033-015-9865-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Dang LTT, Bui ANT, Pham VM, Phan NK, Van Pham P. Production of islet-like insulin-producing cell clusters in vitro from adiposederived stem cells. BIOMEDICAL RESEARCH AND THERAPY 2015. [DOI: 10.7603/s40730-015-0003-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Mansouri A, Esmaeili F, Nejatpour A, Houshmand F, Shabani L, Ebrahimie E. Differentiation of P19 embryonal carcinoma stem cells into insulin-producing cells promoted by pancreas-conditioned medium. J Tissue Eng Regen Med 2014; 10:600-12. [DOI: 10.1002/term.1927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Akram Mansouri
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
| | - Fariba Esmaeili
- Research Institute of Biotechnology; Shahrekord University; Iran
- Department of Biology, Faculty of Basic Sciences; University of Isfahan; Iran
| | | | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences; Shahrekord University of Medical Sciences; Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
- Research Institute of Biotechnology; Shahrekord University; Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology; Shiraz University; Shiraz Iran
- School of Molecular and Biomedical Science; The University of Adelaide; Adelaide Australia
| |
Collapse
|
9
|
Stimpfel M, Cerkovnik P, Novakovic S, Maver A, Virant-Klun I. Putative mesenchymal stem cells isolated from adult human ovaries. J Assist Reprod Genet 2014; 31:959-74. [PMID: 24845159 DOI: 10.1007/s10815-014-0254-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/08/2014] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The purpose of this study was to show that healthy adult human ovaries can be a source of cells showing typical MSCs characteristics under in vitro conditions. METHODS AND RESULTS The cells, which were isolated from ovarian cortex tissue and named putative ovarian mesenchymal stem cells (PO-MSCs), were compared to bone marrow-derived MSCs (BM-MSCs) and to adult human dermal fibroblasts (HDFs). The results of a gene expression analysis using the Human Mesenchymal Stem Cell RT² Profiler™ PCR Array revealed that PO-MSCs were different than fibroblasts. They expressed most of the analyzed genes as BM-MSCs, although some genes were differentially expressed. However, the heterogeneity of PO-MSCs samples was revealed. The PO-MSCs expressed the characteristic genes related to MSCs, such as CD105, CD44, CD90, M-CAM, CD73 and VCAM1. In addition, the expression of markers CD44, CD90, M-CAM and STRO-1 was confirmed in PO-MSCs using immunocytochemistry. The PO-MSCs showed multipotent character, since they were able to differentiate into the cells of adipogenic, osteogenic, neural and pancreatic lineage. CONCLUSIONS Healthy adult human ovaries can harbour an interesting population of cells showing typical MSCs characteristics under in vitro conditions and for this reason we named these cells putative MSCs. These cells express genes encoding main MSCs markers and have an interesting differential potential. Based on these results, we propose PO-MSCs as a novel type of MSCs which share some similarities with BM-MSCs. Nevertheless they show distinct and specific characteristics and are not fibroblasts.
Collapse
Affiliation(s)
- Martin Stimpfel
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
10
|
Li M, Ikehara S. Stem cell treatment for type 1 diabetes. Front Cell Dev Biol 2014; 2:9. [PMID: 25364717 PMCID: PMC4206977 DOI: 10.3389/fcell.2014.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy, and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal β cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs) such as bone marrow-, adipose tissue-, and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM.
Collapse
Affiliation(s)
- Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Osaka, Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Osaka, Japan
| |
Collapse
|
11
|
Abstract
Cell therapy has enormous potential for the treatment of conditions of unmet medical need. Cell therapy may be applied to diabetes mellitus in the context of beta cell replacement or for the treatment of diabetic complications. A large number of cell types including hematopoietic stem cells, mesenchymal stem cells, umbilical cord blood, conditioned lymphocytes, mononuclear cells, or a combination of these cells have been shown to be safe and feasible for the treatment of patients with diabetes mellitus. The first part of this review article will focus on the current perspective of the role of embryonic stem cells and inducible pluripotent stem cells for beta cell replacement and the current clinical data on cell-based therapy for the restoration of normoglycemia. The second part of this review will highlight the therapeutic role of MSCs in islet cells cotransplantation and the management of diabetes related vascular complications.
Collapse
Affiliation(s)
- Aaron Liew
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science (NCBES), National University Ireland Galway (NUIG), Galway, Ireland
| | | |
Collapse
|