1
|
Lee J, Nguyen NT, Tran LM, Kim YH, Min J. Targeted Killing of Staphylococcus aureus Using Specific Peptides Displayed on Yeast Vacuoles. Microbiol Spectr 2023; 11:e0092023. [PMID: 37098917 PMCID: PMC10269669 DOI: 10.1128/spectrum.00920-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Staphylococcus aureus is a common pathogen that causes health care-related and community-associated infections. In this study, we provide a novel system that can recognize and kill S. aureus bacteria. The system is specifically based on a combination of the phage display library technique and yeast vacuoles. A phage clone displaying a peptide capable of specific binding to a whole S. aureus cell was selected from a 12-mer phage peptide library. The peptide sequence was SVPLNSWSIFPR. The selected phage's ability to bind specifically with S. aureus was confirmed using an enzyme-linked immunosorbent assay, and the chosen peptide was then synthesized. The results showed that the synthesized peptides displayed high affinity with S. aureus but low binding ability with other strains, including Gram-negative and Gram-positive bacteria such as Salmonella sp., Shigella spp., Escherichia coli, and Corynebacterium glutamicum. In addition, yeast vacuoles were used as a drug carrier by encapsulating daptomycin, a lipopeptide antibiotic used to treat Gram-positive bacterial infections. The expression of specific peptides at the encapsulated vacuole membrane created an efficient system that can specifically recognize and kill S. aureus bacteria. IMPORTANCE The phage display method was used to select peptides with high affinity and specificity for S. aureus, and these peptides were then induced to be expressed on the surface of yeast vacuoles. These surface-modified vacuoles can act as drug carriers, with drugs such as the lipopeptide antibiotic daptomycin loaded inside. An advantage of using yeast vacuoles as a drug carrier is that they can be easily produced through yeast culture, making the approach cost-effective and suitable for large-scale production and potential implementation in clinical settings. This novel approach offers a promising way to specifically target and eliminate S. aureus that could ultimately lead to improved treatment of bacterial infections and reduced risk of antibiotic resistance.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Ngoc-Tu Nguyen
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Le-Minh Tran
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| | - Yang-Hoon Kim
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
- School of Biological Sciences, Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| |
Collapse
|
2
|
Kim BN, Choi W, Cho BK, Min J. In vitro application of redesigned vacuole extracted in yeast. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-022-00301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Angelopoulou P, Giaouris E, Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. NANOMATERIALS 2022; 12:nano12071196. [PMID: 35407315 PMCID: PMC9000819 DOI: 10.3390/nano12071196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
Cosmetic and food products containing water are prone to contamination during the production, storage, and transit process, leading to product spoilage and degraded organoleptic characteristics. The efficient preservation of food and cosmetics is one of the most important issues the industry is facing today. The use of nanotechnology in food and cosmetics for preservation purposes offers the possibility to boost the activity of antimicrobial agents and/or promote their safer distribution into the end product upon incorporation into packaging or film constructions. In this review, current preservation strategies are discussed and the most recent studies in nanostructures used for preservation purposes are categorized and analyzed in a way that hopefully provides the most promising strategies for both the improvement of product safety and shelf-life extension. Packaging materials are also included since the container plays a major role in the preservation of such products. It is conclusively revealed that most of the applications refer to the nanocomposites as part of the packaging, mainly due to the various possibilities that nanoscience offers to this field. Apart from that, the route of exposure being either skin or the gastrointestinal system involves safety concerns, and since migration of nanoparticles (NPs) from their container can be measured, concerns can be minimized. Conclusion: Nanomaterial science has already made a significant contribution to food and cosmetics preservation, and rapid developments in the last years reinforce the belief that in the future much of the preservation strategies to be pursued by the two industries will be based on NPs and their nanocomposites.
Collapse
Affiliation(s)
- Paraskevi Angelopoulou
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Konstantinos Gardikis
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- R&D Department, APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece
- Correspondence:
| |
Collapse
|
4
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1715-1735. [PMID: 33192209 PMCID: PMC7651826 DOI: 10.1007/s10311-020-01126-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| |
Collapse
|
5
|
Nguyen NT, Kim SY, Wee JH, Kim YH, Min J. Cell blocking: An enhancement of foodborne pathogen detection by fluorescent signals of recombinant yeasts. Anal Biochem 2020; 606:113856. [PMID: 32755600 DOI: 10.1016/j.ab.2020.113856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Cell blocking (CB) technique has been widely applied in many studies since the last century. In our research, this technique was mostly used to study the enhancement of the vacuolar response-based system that could detect Shigella sp. and Salmonella sp. investigated in previous studies. The recombinant yeast cells were blocked by mixing with agarose gel on a 96-wells plate, then storing this plate in -80 °C before using. The optimal conditions for the new system, such as agarose concentration, maximum storage time, were also established. Finally, the efficiency of the vacuolar response-based system was improved, and this system could be used as a portable detector for the foodborne pathogen.
Collapse
Affiliation(s)
- Ngoc-Tu Nguyen
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sang Yong Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135, Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435, South Korea
| | - Ji-Hyang Wee
- Department of Food Science and Biotechnology, Shin Ansan University, 135, Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435, South Korea
| | - Yang-Hoon Kim
- School of Life Science, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|