1
|
Fan Y, Wei J, Li Z, Yang J, Hu X, Zhang H. Biosynthesis, Characterization, and Bioactivity of L-Alanyl-L-tyrosine in Promoting Melanin Synthesis. Appl Biochem Biotechnol 2024; 196:3693-3707. [PMID: 37713063 DOI: 10.1007/s12010-023-04713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
L-Alanyl-L-tyrosine (L-Ala-Tyr) is a dipeptide formed by the condensation of L-alanine methyl ester and L-tyrosine. After entering the body, it can be rapidly broken down to release tyrosine. In this study, L-Ala-Tyr was successfully prepared by using α-ester acyltransferase as biocatalyst and alanine methyl ester (L-Ala-OMe) and tyrosine (L-Tyr) as acyl donor and nucleophile, respectively. The dipeptide yield was increased from 15 to 50% by optimizing the conditions: boric acid-borax (0.2 mol/L), 30°C, pH 9.5, 2:1 acyl donor to nucleophile ratio, DES (ChCl/urea), and 15%(v/v) water content. The catalytic product is then isolated and purified. The structure of the product was identified by high-performance liquid chromatography, mass spectrometry, proton nuclear magnetic resonance, and carbon spectroscopy. Its biological activity was preliminarily determined by the B16-F10 mouse melanoma cell model. The results showed that the purity of L-Ala-Tyr prepared by the separation and purification method of this study was 96.8%, and the mass spectrometry and nuclear magnetic resonance spectroscopy showed that the structure of the peptide was consistent with the expected structure. In addition, the preliminary physiological activity identification results show that L-Ala-Tyr has no toxic effect on cells in the concentration range of 100-800 μmol·L-1, and at the optimal concentration, compared with the positive control 8-methoxypsoralen, it can promote the production of melanin.
Collapse
Affiliation(s)
- Yuna Fan
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road No. 193, Hefei, 230009, Anhui, China
| | - Jinao Wei
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road No. 193, Hefei, 230009, Anhui, China
| | - Zhiwei Li
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road No. 193, Hefei, 230009, Anhui, China
| | - Jingwen Yang
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road No. 193, Hefei, 230009, Anhui, China
| | - Xueqin Hu
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road No. 193, Hefei, 230009, Anhui, China.
| | - Hongbin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road No. 193, Hefei, 230009, Anhui, China.
| |
Collapse
|
2
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
3
|
Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact 2020; 19:129. [PMID: 32527330 PMCID: PMC7291740 DOI: 10.1186/s12934-020-01369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.
Collapse
Affiliation(s)
- Jiangming Zhu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bohua Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qun Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaotong Zhong
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quanxiu Gao
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Jiezheng Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
4
|
Xiong J, Cao SL, Zong MH, Lou WY, Wu XL. Biosynthesis of Alanyl-Histidine Dipeptide Catalyzed by Papain Immobilized on Magnetic Nanocrystalline Cellulose in Deep Eutectic Solvents. Appl Biochem Biotechnol 2020; 192:573-584. [DOI: 10.1007/s12010-020-03345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022]
|
5
|
Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules 2019; 9:biom9110733. [PMID: 31766233 PMCID: PMC6920838 DOI: 10.3390/biom9110733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Short oligopeptides are some of the most promising and functionally important amide bond-containing components, with widespread applications. Biosynthesis of these oligopeptides may potentially become the ultimate strategy because it has better cost efficiency and environmental-friendliness than conventional solid phase peptide synthesis and chemo-enzymatic synthesis. To successfully apply this strategy for the biosynthesis of structurally diverse amide bond-containing components, the identification and selection of specific biocatalysts is extremely important. Given that perspective, this review focuses on the current knowledge about the typical enzymes that might be potentially used for the synthesis of short oligopeptides. Moreover, novel enzymatic methods of producing desired peptides via metabolic engineering are highlighted. It is believed that this review will be helpful for technological innovation in the production of desired peptides.
Collapse
|
6
|
Highly active nanobiocatalysis in deep eutectic solvents via metal-driven enzyme-surfactant nanocomposite. J Biotechnol 2019; 292:39-49. [PMID: 30690095 DOI: 10.1016/j.jbiotec.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/23/2022]
Abstract
Metal-driven papain-surfactant nanocomposite (PA@MSNC), a novel soft nanobiocatalyst, was successfully prepared via one-pot self-assembly technique in aqueous solution for the biosynthesis of N-(benzyloxycarbonyl)-L-alanyl-L-glutamine (Z-Ala-Gln) dipeptide in deep eutectic solvents (DESs). The metal-driven self-assembly process generated PA@MSNC as nanospheres of ˜130 nm in diameter, with high protein loading and relative enzyme activity of 420 mg/g and 80% (4270 U/g protein), respectively. PA@MSNC showed high apparent substrate affinity and catalytic efficiency. The stability of PA@MSNC at high temperature and extreme pH was significantly higher than that of free PA. Catalysis efficiency for the biosynthesis of Z-Ala-Gln by PA@MSNC in choline chloride: glycerol reaction medium was 1.69-fold higher than that of free PA, achieving a high product yield of 75.7% within 4 h. PA@MSNC also showed better techno-economic performance. We propose that enzyme-surfactant nanocomposite via metal-driven dynamically reversible coordination interactions contribute simultaneously promotes catalytic flexibility and configurational stability. The generated PA@MSNC has potential practical implications for green synthesis of dipeptide in DESs.
Collapse
|
7
|
Shan Y, Qi W, Wang M, Su R, He Z. Kinetically Controlled Carboxypeptidase-Catalyzed Synthesis of Novel Antioxidant Dipeptide Precursor BOC-Tyr-Ala. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12209-018-0166-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses. Catalysts 2018. [DOI: 10.3390/catal8040149] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Bastida A, Blanco RM, Zárate SG, García-Junceda E, Guisán JM. Highly improved enzymatic peptide synthesis by using biphasic reactors. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1326484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. Bastida
- Instituto de Química Orgánica General, CSIC, Madrid, Spain
| | - R. M. Blanco
- Instituto de Catálisis y petroleoquímica, Universidad Autónoma de Madrid, CSIC, Madrid, Spain
| | - S. G. Zárate
- Facultad de Tecnología-Carrera de Ingeníeria Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
| | | | - J. M. Guisán
- Instituto de Catálisis y petroleoquímica, Universidad Autónoma de Madrid, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Kinetically Controlled Peptide Synthesis Mediated by Papain Using the Carbamoylmethyl Ester as an Acyl Donor. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9393-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|