1
|
Xu M, Sun D, An G. Exploring the Impact of Pharmacological Target-Mediated Low Plasma Exposure in Lead Compound Selection in Drug Discovery - A Modeling Approach. AAPS J 2024; 26:112. [PMID: 39467882 DOI: 10.1208/s12248-024-00979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Small-molecule drug development faces the challenge of low success rate. In this paper, we propose one potential cause that may occur in the preclinical phase and has rarely been brought up before - the neglected target-mediated low plasma exposure, and the subsequent lead compound mis-selection due to conventional pharmacokinetic criteria requiring sufficient plasma exposure and desired half-life. To evaluate the concept of target-mediate low plasma exposure, we established a minimal physiologically-based pharmacokinetic (mPBPK) model to evaluate the concentration-time profiles of a group of virtual lead series analogs in plasma and in tissues with and without pharmacological target expression. Simulation results demonstrated that the candidate with the highest target binding has the lowest plasma exposure due to target-mediated tissue retention. The traditional PK criteria, such as the requirement of sufficient plasma exposure and desired half-life, may potentially result in lead compound mis-selection by discarding the appropriate and best candidate(s). The mPBPK model was partially validated using 4 tyrosine kinase inhibitors based on our in-house PK and tissue distribution data obtained in animals. The association rate constant (Kass) was estimated to be 49.8 h-1, 31.4 h-1, 8.58 h-1, and 1.91 h-1 for afatinib, dasatinib, gefitinib, and sorafenib, respectively. Among these four model drugs, a strong correlation was observed between their Kass values and AUChigh-perfused tissue /AUCplasma ratios, a metric of tissue retention. Our mPBPK modeling and simulation results indicated that the concept of target-mediated low plasma exposure should be kept in mind during the lead compound selection process.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
2
|
Yuan X, An G. Characterizing the Nonlinear Pharmacokinetics and Pharmacodynamics of BI 187004, an 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor, in Humans by a Target-Mediated Drug Disposition Model. J Clin Pharmacol 2024; 64:993-1005. [PMID: 38652112 DOI: 10.1002/jcph.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
BI 187004, a selective small-molecule inhibitor of 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1), displayed complex nonlinear pharmacokinetics (PK) in humans. Following nine single oral doses, BI 187004 exhibited nonlinear PK at low doses and linear PK at higher doses. Notably, substantial hepatic 11β-HSD1 inhibition (50%) was detected in a very low-dose group, achieving a consistent 70% hepatic enzyme inhibition in subsequent ascending doses without any dose-dependent effects. The unusual PK and PD profiles of BI 187004 suggest the presence of pharmacological target-mediated drug disposition (TMDD), arising from the saturable binding of BI 187004 compound to its high-affinity and low-capacity target 11β-HSD1. The non-intuitive dose, exposure, and response relationship for BI 187004 pose a significant challenge in rational dose selection. This study aimed to construct a TMDD model to explain the complex nonlinear PK behavior and underscore the importance of recognizing TMDD in this small-molecule compound. Among the various models explored, the best model was a two-compartment TMDD model with three transit absorption components. The final model provides insights into 11β-HSD1 binding-related parameters for BI 187004, including the total amount of 11β-HSD1 in the liver (estimated to be 8000 nmol), the second order association rate constant (estimated to be 0.102 nM-1h-1), and the first-order dissociation rate constant (estimated to be 0.11 h-1). Our final population PK model successfully characterized the intricate nonlinear PK of BI 187004 across a wide dose range. This modeling work serves as a valuable reference for the rational selection of the dose regimens for BI 187004's future clinical trials.
Collapse
Affiliation(s)
- Xuanzhen Yuan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Wu N, Katz DA, An G. Population Target-Mediated Pharmacokinetic/Pharmacodynamic Modeling to Evaluate SPI-62 Exposure and Hepatic 11β-Hydroxysteroid Dehydrogenase Type 1 (HSD-1) Inhibition in Healthy Adults. Clin Pharmacokinet 2023; 62:1275-1288. [PMID: 37452998 PMCID: PMC10449972 DOI: 10.1007/s40262-023-01278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION SPI-62 is a small-molecule 11β-hydroxysteroid dehydrogenase type 1 (HSD-1) inhibitor exhibiting complicated nonlinear pharmacokinetics (PK) in human. Previously, we developed a target-mediated drug disposition (TMDD) model to characterize the substantial nonlinear PK of SPI-62. OBJECTIVE The aim of the current analysis was to perform population PK/PD analysis to further link SPI-62 exposure (i.e., PK) with its response (i.e., inhibition of hepatic HSD-1 activity) to gain a quantitative understanding of the SPI-62 dose-exposure-response relationship. METHODS PK and PD data from the first-in-human (FIH) clinical trials, including single ascending dose (SAD) and multiple ascending dose (MAD) studies, were used for model development. During the model development process, the final model selection was based on biological and physiological plausibility, goodness-of-fit plots, stability of parameter estimates, and objective function value. The nonlinear-mixed effect modeling (NONMEM) software was used for both the implementation of the PK/PD model and model simulation. SPI-62 plasma levels and hepatic HSD-1 inhibition over time following various dose regimens were simulated. RESULTS The final model was a two-compartment TMDD model component for SPI-62 and an inhibitory Imax model component for hepatic HSD-1 activity. The TMDD-hepatic PD model that we established adequately characterized all remarkable PK and PD behaviors of SPI-62, such as extremely low plasma exposures following the first low doses, nonlinear PK turned into linear PK after repeated low doses, and substantial and long-lasting hepatic HSD-1 inhibition following low doses. SPI-62 was estimated to bind to the target with a second-order association rate constant (Kon) of 8.43 nM-1 h-1 and first-order dissociation rate constant (Koff) value of 0.229 h-1, indicating that SPI-62 binds rapidly to, and dissociates slowly from, its pharmacological target. The estimated target capacity (Rtot) of 5460 nmol corresponds to approximately 2.2 mg of SPI-62, which comports well with the dose range in which PK nonlinearity is prominent. Model simulation results reveal that a 6 mg once-daily regimen can lead to long-lasting and substantial hepatic HSD-1 inhibition. CONCLUSIONS A population TMDD-PD model that explains SPI-62 nonlinear PK and hepatic HSD-1 inhibition following different dose regimens in healthy adults was successfully established. Our simulation results provide a solid foundation for model-informed development of SPI-62.
Collapse
Affiliation(s)
- Nan Wu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, IA, 52242, USA
| | - David A Katz
- Sparrow Pharmaceuticals, Inc., Portland, OR, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Jiao Y, Yan J, Vicchiarelli M, Sutaria DS, Lu P, Reyna Z, Spellberg B, Bonomo RA, Drusano GL, Louie A, Luna BM, Bulitta JB. Individual Components of Polymyxin B Modeled via Population Pharmacokinetics to Design Humanized Dosage Regimens for a Bloodstream and Lung Infection Model in Immune-Competent Mice. Antimicrob Agents Chemother 2023; 67:e0019723. [PMID: 37022153 PMCID: PMC10190254 DOI: 10.1128/aac.00197-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael Vicchiarelli
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zeferino Reyna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brad Spellberg
- Los Angeles County-USC (LAC+USC) Medical Center, Los Angeles, California, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Deparment of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
- Deparment of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Xu M, An G. A Pharmacometrics Model to Characterize a New Type of Target-Mediated Drug Disposition (TMDD) - Nonlinear Pharmacokinetics of Small-Molecule PF-07059013 Mediated By Its High-capacity Pharmacological Target Hemoglobin With Positive Cooperative Binding. AAPS J 2023; 25:41. [PMID: 37055588 DOI: 10.1208/s12248-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
In general, small-molecule target-mediated drug disposition (TMDD) is caused by the interaction of a drug with its high-affinity, low-capacity pharmacological target. In the current work, we developed a pharmacometrics model to characterize a new type of TMDD, where the nonlinear pharmacokinetics (PK) is mediated by a high-capacity pharmacological target with cooperative binding instead of target saturation. The model drug we used was PF-07059013, a noncovalent hemoglobin modulator that demonstrated promising preclinical efficacy to treat sickle cell disease (SCD), and showed complex nonlinear PK in mice with the fraction of unbound drug in blood (fub) decreased with an increase in PF-07059013 concentrations/doses due to the positive cooperative binding of PF-07059013 to hemoglobin. Among the various models we evaluated, the best one is a semi-mechanistic model where only drug molecules not bound to hemoglobin were allowed for elimination, with the nonlinear pharmacokinetics being captured by incorporating cooperative binding for drug molecules bound to hemoglobin. Our final model provided valuable insight on target binding-related parameters, such as the Hill coefficient γ (estimated to be 1.6), binding constant KH (estimated to be 1450 µM), and the amount of total hemoglobin Rtot (estimated to be 2.13 µmol). As the dose selection of a compound with positive cooperative binding is tricky and challenging due to the nonproportional and steep response, our model may be valuable in facilitating the rational dose regimen selection for future preclinical animal and clinical trials for PF-07059013 and other compounds whose nonlinear pharmacokinetics are caused by similar mechanisms.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
6
|
An G, Katz DA. Importance of Target-Mediated Drug Disposition (TMDD) of Small-Molecule Compounds and Its Impact on Drug Development-Example of the Class Effect of HSD-1 Inhibitors. J Clin Pharmacol 2022; 63:526-538. [PMID: 36479709 DOI: 10.1002/jcph.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
With more potent drug candidates being developed, the incidence of target-mediated drug disposition (TMDD) in small-molecule compounds has significantly increased in the past decade. Moreover, TMDD appears to apply to some small-molecule compound classes. The main purpose of the current review is to increase the awareness of TMDD in a series of small-molecule inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (HSD-1) using ABT-384, SPI-62, MK-0916, BMS-823778, and BI-187004 as case examples. Although developed independently by different pharmaceutical companies, these HSD-1 inhibitors demonstrated strikingly similar nonlinear pharmacokinetic behaviors when wide dose ranges were evaluated in first-in-human (FIH) single ascending dose (SAD) and multiple ascending dose (MAD) studies. Recognizing TMDD in small-molecule compounds is important, as the information can be leveraged to select the appropriate dose regimen, improve clinical trial design, as well as predict pharmacological target occupancy. In this review, we summarize the general pharmacokinetic features that facilitate the recognition of small-molecule TMDD, provide case examples of specific HSD-1 inhibitors, highlight the importance of recognizing TMDD of small-molecule compounds during clinical development, and comment on the importance of utilizing pharmacometric modeling to facilitate the quantitative understanding of small-molecule compounds exhibiting TMDD.
Collapse
Affiliation(s)
- Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - David A Katz
- Sparrow Pharmaceuticals, Inc., Portland, Oregon, USA
| |
Collapse
|
7
|
Wu N, Katz DA, An G. A Target-Mediated Drug Disposition Model to Explain Nonlinear Pharmacokinetics of the 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor SPI-62 in Healthy Adults. J Clin Pharmacol 2021; 61:1442-1453. [PMID: 34110620 PMCID: PMC8596879 DOI: 10.1002/jcph.1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
SPI‐62 is a selective and potent small‐molecule inhibitor of 11β‐hydroxysteroid dehydrogenase type 1 (HSD‐1). SPI‐62 has demonstrated substantial and complex nonlinear pharmacokinetics (PK) in humans that is characterized by unusually low plasma exposure at low doses, dose‐dependent volume of distribution, nonlinear PK following the first dose, and dose‐proportional PK at steady state, as well as unusually high accumulation ratios at low doses. The most likely explanation for the observed nonlinearity of SPI‐62 is the saturable binding of SPI‐62 to its pharmacological target HSD‐1, a phenomenon known as target‐mediated drug disposition (TMDD). Because of the nonlinear and complex PK of SPI‐62, the relationship among SPI‐62 dose, exposure, and response is no longer intuitive and consequently dose selection can be challenging. To facilitate dose selection and clinical trial design, in the current study population PK analysis was performed to characterize SPI‐62 dose‐exposure relationship in humans quantitatively. SPI‐62 PK was best characterized by a 2‐compartment TMDD model with 3 transit absorption compartments. The model was successfully established to explain the substantial and unusual nonlinear PK of SPI‐62 in humans, and it provided adequate fitting for both single‐ and multiple‐dose data. Our modeling work has provided a strong foundation for dose selection in future SPI‐62 clinical trials.
Collapse
Affiliation(s)
- Nan Wu
- Division of Pharmaceutics and Translational TherapeuticsCollege of PharmacyUniversity of IowaIowa CityIowaUSA
| | | | - Guohua An
- Division of Pharmaceutics and Translational TherapeuticsCollege of PharmacyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
8
|
An G, Lee KSS, Yang J, Hammock BD. Target-Mediated Drug Disposition-A Class Effect of Soluble Epoxide Hydrolase Inhibitors. J Clin Pharmacol 2020; 61:531-537. [PMID: 33078430 DOI: 10.1002/jcph.1763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Pharmacological target-mediated drug disposition (TMDD) represents a special source of nonlinear pharmacokinetics, and its occurrence in large-molecule compounds has been well recognized because numerous protein drugs have been reported to have TMDD due to specific binding to their pharmacological targets. Although TMDD can also happen in small-molecule compounds, it has been largely overlooked. In this mini-review, we summarize the occurrence of TMDD that we discovered recently in a series of small-molecule soluble epoxide hydrolase (sEH) inhibitors. Our journey started with an accidental discovery of target-mediated kinetics of 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), a potent sEH inhibitor, in a pilot clinical study. To confirm what we observed in humans, we conducted a series of mechanism experiments in animals, including pharmacokinetic experiments using sEH knockout mice as well as in vivo displacement experiments with co-administration of another potent sEH inhibitor. Our mechanism studies confirmed that the TMDD of TPPU is due to its pharmacological target sEH. We further expanded our evaluation to various other sEH inhibitors and found that TMDD is a class effect of this group of small-molecule sEH inhibitors. In addition to summarizing the occurrence of TMDD in sEH inhibitors, in this mini-review we also highlighted the importance of recognizing TMDD of small-molecule compounds and its impact in clinical development as well as using pharmacometric modeling in facilitating quantitative understanding of TMDD.
Collapse
Affiliation(s)
- Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, Iowa, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.,Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Jun Yang
- Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California, USA
| |
Collapse
|
9
|
Wu N, An G. Incorporating Pharmacological Target-Mediated Drug Disposition (TMDD) in a Whole-Body Physiologically Based Pharmacokinetic (PBPK) Model of Linagliptin in Rat and Scale-up to Human. AAPS JOURNAL 2020; 22:125. [PMID: 32996028 DOI: 10.1208/s12248-020-00481-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Linagliptin demonstrates substantial nonlinear pharmacokinetics due to its saturable binding to its pharmacological target dipeptidyl peptide 4 (DPP-4), a phenomenon known as target-mediated drug disposition (TMDD). In the current study, we established a novel whole-body physiologically-based pharmacokinetic (PBPK)-TMDD model for linagliptin. This comprehensive model contains plasma and 14 tissue compartments, among which TMDD binding process was incorporated in 9 of them, namely the plasma, kidney, liver, spleen, lung, skin, salivary gland, thymus, and reproductive organs. Our final model adequately captured the concentration-time profiles of linagliptin in both plasma and various tissues in both wildtype rats and DPP4-deficient rats following different doses. The association rate constant (kon) in plasma and tissues were estimated to be 0.943 and 0.00680 nM-1 h-1, respectively, and dissociation rate constant (koff), in plasma and tissues were estimated to be 0.0698 and 0.00880 h-1, respectively. The binding affinity of linagliptin to DPP-4 (Kd) was predicted to be higher in plasma (0.0740 nM) than that in tissue (1.29 nM). When scaled up to a human, this model captured the substantial and complex nonlinear pharmacokinetic behavior of linagliptin in human adults that is characterized by less-than dose-proportional increase in plasma exposure, dose-dependent clearance and volume of distribution, as well as long terminal half-life with minimal accumulation after repeated doses. Our modeling work is not only novel but also of high significance as the whole-body PBPK-TMDD model platform developed using linagliptin as the model compound could be applied to other small-molecule compounds exhibiting TMDD to facilitate their optimal dose selection. Graphical abstract.
Collapse
Affiliation(s)
- Nan Wu
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA
| | - Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
10
|
Iwasaki S, Zhu A, Hanley M, Venkatakrishnan K, Xia C. A Translational Physiologically Based Pharmacokinetics/Pharmacodynamics Framework of Target-Mediated Disposition, Target Inhibition and Drug-Drug Interactions of Bortezomib. AAPS JOURNAL 2020; 22:66. [PMID: 32291610 DOI: 10.1208/s12248-020-00448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/11/2020] [Indexed: 11/30/2022]
Abstract
Bortezomib is a potent 20S proteasome inhibitor approved for the treatment of multiple myeloma and mantle cell lymphoma. Despite the extensive clinical use of bortezomib, the mechanism of the complex time-dependent pharmacokinetics of bortezomib has not been fully investigated in context of its pharmacodynamics (PD) and drug-drug interaction (DDI) profiles. Here, we aimed to develop a mechanistic physiologically based (PB) PK/PD model to project PK, blood target inhibition and DDI of bortezomib in patients. A minimal PBPK/PD model consisting of six compartments was constructed using a bottom-up approach with pre-clinical data and human physiological parameters. Specifically, the target-mediated drug disposition (TMDD) of bortezomib in red blood cells (RBC), which determines target inhibition in blood, was characterized by incorporating the proteasome binding affinity of bortezomib and the proteasome concentration in RBC. The hepatic clearance and fraction metabolized by different CYP isoforms were estimated from in vitro metabolism and phenotyping experiments. The established model adequately characterized the multi-exponential and time-dependent plasma pharmacokinetics, target binding and blood proteasome inhibition of bortezomib. Further, the model was able to accurately predict the impact of a strong CYP3A inducer (rifampicin) and inhibitor (ketoconazole) on bortezomib exposure. In conclusion, the mechanistic PBPK/PD model successfully described the complex pharmacokinetics, target inhibition and DDIs of bortezomib in patients. This study illustrates the importance of incorporating target biology, drug-target interactions and in vitro clearance parameters into mechanistic PBPK/PD models and the utility of such models for pharmacokinetic, pharmacodynamic and DDI predictions.
Collapse
Affiliation(s)
- Shinji Iwasaki
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Co., 35 Landsdowne Street, Cambridge, Massachusetts, USA.
| | - Andy Zhu
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Co., 35 Landsdowne Street, Cambridge, Massachusetts, USA
| | - Michael Hanley
- Quantitative Clinical Pharmacology, Takeda Pharmaceuticals International, Co., 35 Landsdowne Street, Cambridge, Massachusetts, USA
| | - Karthik Venkatakrishnan
- Quantitative Clinical Pharmacology, Takeda Pharmaceuticals International, Co., 35 Landsdowne Street, Cambridge, Massachusetts, USA
| | - Cindy Xia
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Co., 35 Landsdowne Street, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Pharmacokinetics of the Monocarboxylate Transporter 1 Inhibitor AZD3965 in Mice: Potential Enterohepatic Circulation and Target-Mediated Disposition. Pharm Res 2019; 37:5. [PMID: 31823112 DOI: 10.1007/s11095-019-2735-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate the pharmacokinetics (PK) of the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in mice after IV and oral administration and to develop mechanistic PK models to assess the potential enterohepatic circulation (EHC) and target-mediated drug disposition (TMDD) of AZD3965. METHODS Female BALB/c mice were administered AZD3965 by IV injection (10, 50 and 100 mg/kg) or oral gavage (100 mg/kg). Plasma samples were analyzed using LC/MS/MS, and PK parameters determined by compartmental and non-compartmental analyses. RESULTS AZD3965 exhibited a large volume of distribution and rapid oral absorption, with a high oral bioavailability. Prominent reentry peaks were observed after both oral and IV administration, suggesting potential EHC of AZD3965 or of a potential glucuronide conjugate. The dose-dependent studies indicated greater than proportional increases in exposure, an increase in the terminal half-life, and decrease in clearance and volume of distribution with increasing IV doses, indicating nonlinear pharmacokinetics and potential TMDD of AZD3965. Mechanistic compartmental models were developed to characterize the complex pharmacokinetics of AZD3965. CONCLUSIONS The current study represents the first comprehensive report of the pharmacokinetics of AZD3965 in mice, indicating the potential contribution of EHC and TMDD in the disposition of AZD3965.
Collapse
|
12
|
An G. Concept of Pharmacologic Target-Mediated Drug Disposition in Large-Molecule and Small-Molecule Compounds. J Clin Pharmacol 2019; 60:149-163. [PMID: 31793004 DOI: 10.1002/jcph.1545] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022]
Abstract
Target-mediated drug disposition (TMDD) is a term to describe a nonlinear pharmacokinetic (PK) phenomenon that is caused by high-affinity binding of a compound to its pharmacologic targets. As the interaction between a drug and its pharmacologic target belongs to the process of pharmacodynamics (PD), TMDD can be viewed as a consequence of "PD affecting PK." Although there are numerous TMDD-related articles in the literature, most of them focus on characterizing TMDD using various mathematical models, which may not be suitable for those readers who have little interest in mathematical modeling and only want to have an understanding of the basic concept. The goal of this review is to serve as a "primer" on TMDD. This review explains (1) how TMDD happens; (2) why large-molecule and small-molecule compounds exhibiting TMDD demonstrate substantially different nonlinear PK behaviors; (3) what nonlinear PK profiles look like in large-molecule and small-molecule compounds exhibiting TMDD, using pegfilgrastim, erythropoietin, ABT-384, and linagliptin as case examples; and (4) how to identify whether the nonlinear PK of a compound is because of TMDD.
Collapse
Affiliation(s)
- Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Bellaire S, Walzer M, Wang T, Krauwinkel W, Yuan N, Marek GJ. Safety, Pharmacokinetics, and Pharmacodynamics of ASP3662, a Novel 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor, in Healthy Young and Elderly Subjects. Clin Transl Sci 2019; 12:291-301. [PMID: 30740895 PMCID: PMC6510378 DOI: 10.1111/cts.12618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/31/2018] [Indexed: 11/28/2022] Open
Abstract
Inhibition of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) represents a potential mechanism for improving pain conditions. ASP3662 is a potent and selective inhibitor of 11β-HSD1. Two phase I clinical studies were conducted to assess the safety, tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of single and multiple ascending doses of ASP3662 in healthy young and elderly non-Japanese and young Japanese subjects. Nonlinear, more than dose-proportional PKs were observed for ASP3662 after single-dose administration, particularly at lower doses (≤ 6 mg); the PKs at steady state were dose proportional, although the time to ASP3662 steady state was dose dependent at lower doses (≤ 2 mg). Similar PKs were observed among young Japanese, young non-Japanese, and elderly non-Japanese subjects. Specific inhibition of 11β-HSD1 occurred after both single and multiple doses of ASP3662. A marked dissociation between PKs and PDs was observed after single but not multiple doses of ASP3662. ASP3662 was generally safe and well tolerated.
Collapse
Affiliation(s)
- Susan Bellaire
- Formerly with Astellas Pharma Europe BV, Leiden, The Netherlands
| | - Mark Walzer
- Astellas Pharma Global Development, Northbrook, Illinois, USA
| | - Tianli Wang
- Formerly with Astellas Pharma, Inc., Northbrook, Illinois, USA
| | | | - Nancy Yuan
- Formerly with Astellas Pharma, Inc., Northbrook, Illinois, USA
| | | |
Collapse
|
14
|
Bach T, Jiang Y, Zhang X, An G. General Pharmacokinetic Features of Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Simulation-Based Study. J Clin Pharmacol 2018; 59:394-405. [DOI: 10.1002/jcph.1335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Thanh Bach
- Division of Pharmaceutics and Translational Therapeutics; College of Pharmacy; University of Iowa; Iowa City IA USA
| | - Yu Jiang
- Division of Pharmaceutics and Translational Therapeutics; College of Pharmacy; University of Iowa; Iowa City IA USA
- Department of Clinical Pharmacology and Pharmacometrics; Alnylam Pharmaceuticals; Cambridge MA USA
| | - Xiaoyan Zhang
- Department of Clinical Pharmacology; ADC Therapeutics; Murray Hill NJ USA
| | - Guohua An
- Division of Pharmaceutics and Translational Therapeutics; College of Pharmacy; University of Iowa; Iowa City IA USA
| |
Collapse
|
15
|
An G. Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Minireview. J Clin Pharmacol 2016; 57:137-150. [PMID: 27489162 DOI: 10.1002/jcph.804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 01/19/2023]
Abstract
Nonlinearities are commonplace in pharmacokinetics, and 1 special source is the saturable binding of the drug to a high-affinity, low-capacity target, a phenomenon known as target-mediated drug disposition (TMDD). Compared with large-molecule compounds undergoing TMDD, which has been well recognized due to its high prevalence, TMDD in small-molecule compounds is more counterintuitive and has not been well appreciated. With more and more potent small-molecule drugs acting on highly specific targets being developed as well as increasingly sensitive analytical techniques becoming available, many small-molecule compounds have recently been reported to have nonlinear pharmacokinetics imparted by TMDD. To expand our current knowledge of TMDD in small-molecule compounds and increase the awareness of this clinically important phenomenon, this minireview provides an overview of the small-molecule compounds that demonstrate nonlinear pharmacokinetics imparted by TMDD. The present review also summarizes the general features of TMDD in small-molecule compounds and highlights the differences between TMDD in small-molecule compounds and large-molecule compounds.
Collapse
Affiliation(s)
- Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
An G, Liu W, Dutta S. Small-molecule compounds exhibiting target-mediated drug disposition - A case example of ABT-384. J Clin Pharmacol 2015; 55:1079-85. [DOI: 10.1002/jcph.531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/24/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Guohua An
- Division of Pharmaceutics and Translational Therapeutics; College of Pharmacy; University of Iowa; Iowa City IA USA
| | - Wei Liu
- Clinical Pharmacology and Pharmacometrics, Research and Development; AbbVie; North Chicago IL USA
| | - Sandeep Dutta
- Clinical Pharmacology and Pharmacometrics, Research and Development; AbbVie; North Chicago IL USA
| |
Collapse
|