1
|
Li T, Liu Y, Cao J, Lu X, Lu Y, Wang Y, Zhang C, Wu M, Deng S, Li L, Shi M. Triphenyl phosphate induces lipid metabolism disorder and promotes obesity through PI3K/AKT signaling pathway. ENVIRONMENT INTERNATIONAL 2025; 198:109428. [PMID: 40199182 DOI: 10.1016/j.envint.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Triphenyl phosphate (TPHP) is a widely used organic phosphate flame retardant that has been reported as a potential environmental obesogen. However, the potential impact and mechanism of action of TPHP on adipose tissue are still unclear. This study investigates the potential impact of TPHP on lipid metabolism disorders through in vivo and in vitro experiments. Male and female BALB/c mice were exposed to TPHP (0, 1, 10, and 150 mg/kg/day) for 60 days, and 3T3-L1 preadipocytes were treated with concentrations of TPHP (0, 0.1, 1, 10 μM) during differentiation. The results showed that exposure to TPHP could cause gender specific dyslipidemia, with male mice exhibiting dose-dependent increases in inguinal adipose tissue coefficient, adipocyte hypertrophy, and upregulation of adipose differentiation and adipogenesis-related genes. In contrast, female mice did not show significant changes in tissue morphology. This suggested that TPHP might promote the potential occurrence of adiposity by disrupting the lipid metabolism homeostasis of male adipose tissue. During the differentiation and maturation process of 3T3-L1 preadipocytes, exposure to TPHP led to increased lipid accumulation and disrupted lipid homeostasis by simultaneous activation adipogenesis and lipolysis. Multiple omics data showed that the activation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway and fatty acid metabolism was the core mechanism of TPHP induced metabolic dysfunction. Further research showed that TPHP activated the PI3K/AKT pathway, and PI3K inhibitor (LY294002) could rescue TPHP induced lipid droplet formation and normalize the expression of adipogenic markers. These findings confirm that TPHP is a potential environmental obesogen that can disrupt the metabolic homeostasis of white adipose tissue through the PPARγ and PI3K/AKT signaling pathways, with higher susceptibility in males. This study provides compelling evidence for the obesogenic effects of TPHP and information for risk assessment of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Meifen Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Song Deng
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| |
Collapse
|
2
|
Germain L, Pereira D, Winn LM. Reference gene considerations for toxicological assessment of the flame retardant triphenyl phosphate in an in vitro fish embryonic model. J Appl Toxicol 2025; 45:288-297. [PMID: 39295171 PMCID: PMC11738539 DOI: 10.1002/jat.4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The reliability of relative quantification RT-qPCR depends upon the gene of interest being normalized to one or more reference genes, with the assumption that the chosen reference genes do not experience altered expression with experimental conditions. The correct choice of stable reference genes is critical when investigating alterations to gene transcript levels following exposure to endocrine and metabolic disrupting chemicals, such as the flame retardant triphenyl phosphate (TPhP). This study assessed the stability of eight reference genes following TPhP exposure in embryonic cells derived from rainbow trout (Oncorhynchus mykiss). The genes β-actin (actb) and 18s rRNA (18s) were stable, while glyceraldehyde-3-phosphate dehydrogenase (gapdh) relative expression was found to be increased. gapdh is a popular reference gene and has been previously used in the literature for investigating TPhP exposure in teleost fish models. We discuss the implications of gapdh upregulation in the context of TPhP as a metabolic disrupting chemical. Furthermore, we quantified the expression of the tumor suppressor gene p53 following TPhP exposure in relation to different reference genes to use as an example to report on how discrepancies in findings might arise depending on the stability of the chosen reference gene.
Collapse
Affiliation(s)
- Logan Germain
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonCanada
| | - Delaine Pereira
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonCanada
| | - Louise M. Winn
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonCanada
- School of Environmental StudiesQueen's UniversityKingstonCanada
| |
Collapse
|
3
|
Germain L, Winn LM. The flame retardant triphenyl phosphate alters the epigenome of embryonic cells in an aquatic in vitro model. J Appl Toxicol 2024; 44:965-977. [PMID: 38419361 DOI: 10.1002/jat.4589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Triphenyl phosphate (TPhP) is an organophosphate flame retardant and plasticizer that is added to a wide variety of consumer and industrial products. It is also a ubiquitous environmental pollutant. Exposure to TPhP has been shown to alter gene expression in metabolic and estrogenic signaling pathways in in vitro and in vivo models of a variety of species, and as such, is considered to be an endocrine disrupting chemical. Exposure to endocrine disrupting chemicals is increasingly being associated with changes to the epigenome, especially during embryonic development. The aim of this study was to evaluate whether TPhP exposure in aquatic ecosystems has the ability to alter the epigenome in two immortal cell lines derived from trout (Oncorhynchus mykiss). This study assessed whether 24 h exposure to TPhP resulted in changes to histone modification and DNA methylation profiles in steelhead trout embryonic cells and rainbow trout gill epithelial cells. Results show that several epigenetic modifications on histone H3 and DNA methylation are altered in the embryonic cells following TPhP exposure, but not in the gill epithelial cells. Specifically, histone H3 acetylation, histone H3 mono-methylation and global DNA methylation were found to be reduced. The alterations of these epigenetic modification profiles in the embryonic cells suggest that exposure to TPhP during fetal development may alter gene expression in the developing embryo, likely in metabolic and estrogenic pathways. The impacts to the epigenome determined in this study may even carry multigenerational detrimental effects on human and ecosystem health, which requires further investigation.
Collapse
Affiliation(s)
- Logan Germain
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- School of Environmental Studies, Queen's University, Kingston, Canada
| |
Collapse
|
4
|
Bui TT, Aasa J, Abass K, Ågerstrand M, Beronius A, Castro M, Escrivá L, Galizia A, Gliga A, Karlsson O, Whaley P, Yost E, Rudén C. Applying a modified systematic review and integrated assessment framework (SYRINA) - a case study on triphenyl phosphate. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:380-399. [PMID: 38205707 PMCID: PMC10879963 DOI: 10.1039/d3em00353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
This work presents a case study in applying a systematic review framework (SYRINA) to the identification of chemicals as endocrine disruptors. The suitability and performance of the framework is tested with regard to the widely accepted World Health Organization definition of an endocrine disruptor (ED). The endocrine disrupting potential of triphenyl phosphate (TPP), a well-studied flame retardant reported to exhibit various endocrine related effects was assessed. We followed the 7 steps of the SYRINA framework, articulating the research objective via Populations, Exposures, Comparators, Outcomes (PECO) statements, performed literature search and screening, conducted study evaluation, performed data extraction and summarized and integrated the evidence. Overall, 66 studies, consisting of in vivo, in vitro and epidemiological data, were included. We concluded that triphenyl phosphate could be identified as an ED based on metabolic disruption and reproductive function. We found that the tools used in this case study and the optimizations performed on the framework were suitable to assess properties of EDs. A number of challenges and areas for methodological development in systematic appraisal of evidence relating to endocrine disrupting potential were identified; significant time and effort were needed for the analysis of in vitro mechanistic data in this case study, thus increasing the workload and time needed to perform the systematic review process. Further research and development of this framework with regards to grey literature (non-peer-reviewed literature) search, harmonization of study evaluation methods, more consistent evidence integration approaches and a pre-defined method to assess links between adverse effect and endocrine activity are recommended. It would also be advantageous to conduct more case studies for a chemical with less data than TPP.
Collapse
Affiliation(s)
- Thuy T Bui
- Department of Environmental Science, Stockholm University, Sweden.
| | | | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland
| | | | | | - Mafalda Castro
- Section for Environmental Chemistry and Physics, University of Copenhagen, Denmark
| | - Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Spain
| | - Audrey Galizia
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, USA
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Sweden
| | - Paul Whaley
- Lancaster Environment Centre, Lancaster University, UK
| | - Erin Yost
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, USA
| | - Christina Rudén
- Department of Environmental Science, Stockholm University, Sweden.
| |
Collapse
|
5
|
Marinello WP, Gillera SEA, Han Y, Richardson JR, St Armour G, Horman BM, Patisaul HB. Gestational exposure to FireMaster® 550 (FM 550) disrupts the placenta-brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster). Mol Cell Endocrinol 2023; 576:112041. [PMID: 37562579 PMCID: PMC10795011 DOI: 10.1016/j.mce.2023.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Gestational flame retardant (FR) exposure has been linked to heightened risk of neurodevelopmental disorders, but the mechanisms remain largely unknown. Historically, toxicologists have relied on traditional, inbred rodent models, yet those do not always best model human vulnerability or biological systems, especially social systems. Here we used prairie voles (Microtus ochrogaster), a monogamous and bi-parental rodent, leveraged for decades to decipher the underpinnings of social behaviors, to examine the impact of fetal FR exposure on gene targets in the mid-gestational placenta and fetal brain. We previously established gestational exposure to the commercial mixture Firemaster 550 (FM 550) impairs sociality, particularly in males. FM 550 exposure disrupted placental monoamine production, particularly serotonin, and genes required for axon guidance and cellular respiration in the fetal brains. Effects were dose and sex specific. These data provide insights on the mechanisms by which FRs impair neurodevelopment and later in life social behaviors.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | | | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Ding E, Deng F, Fang J, Li T, Hou M, Liu J, Miao K, Yan W, Fang K, Shi W, Fu Y, Liu Y, Dong H, Dong L, Ding C, Liu X, Pollitt KJG, Ji JS, Shi Y, Cai Y, Tang S, Shi X. Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47009. [PMID: 37042841 PMCID: PMC10094192 DOI: 10.1289/ehp11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are common endocrine-disrupting chemicals, and OPE exposure may be associated with type 2 diabetes (T2D). However, greater knowledge regarding the biomolecular intermediators underlying the impact of OPEs on T2D in humans are needed to understand biological etiology. OBJECTIVES We explored the associations between OPE exposure and glycometabolic markers among older Chinese adults 60-69 years of age to elucidate the underlying mechanisms using a multi-omics approach. METHODS This was a longitudinal panel study comprising 76 healthy participants 60-69 years of age who lived in Jinan city of northern China. The study was conducted once every month for 5 months, from September 2018 to January 2019. We measured a total of 17 OPEs in the blood, 11 OPE metabolites in urine, and 4 glycometabolic markers (fasting plasma glucose, glycated serum protein, fasting insulin, and homeostatic model assessment for insulin resistance). The blood transcriptome and serum/urine metabolome were also evaluated. The associations between individual OPEs and glycometabolic markers were explored. An adverse outcome pathway (AOP) was established to determine the biomolecules mediating the associations. RESULTS Exposure to five OPEs and OPE metabolites (trimethylolpropane phosphate, triphenyl phosphate, tri-iso-butyl phosphate, dibutyl phosphate, and diphenyl phosphate) was associated with increased levels of glycometabolic markers. The mixture effect analysis further indicated the adverse effect of OPE mixtures. Multi-omics analyses revealed that the endogenous changes in the transcriptional and metabolic levels were associated with OPE exposure. The putative AOPs model suggested that triggers of molecular initiation events (e.g., insulin receptor and glucose transporter type 4) with subsequent key events, including disruptions in signal transduction pathways (e.g., phosphatidylinositol 3-kinase/protein kinase B and insulin secretion signaling) and biological functions (glucose uptake and insulin secretion), may constitute the diabetogenic effects of OPEs. DISCUSSION OPEs are associated with the elevated risk of T2D among older Chinese adults 60-69 years of age. Implementing OPE exposure reduction strategies may help reduce the T2D burden among these individuals, if the relationship is causal. https://doi.org/10.1289/EHP11896.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzheng Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S. Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Shafique S, Wolpert SH, Philbrook NA, Winn LM. Gestational exposure to triphenyl phosphate induces epigenetic modifications in C57Bl/6 fetal liver. Birth Defects Res 2023; 115:338-347. [PMID: 36369707 DOI: 10.1002/bdr2.2121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Triphenyl phosphate (TPHP) is a chemical flame retardant and plasticizer which is added to consumer and industrial products. The developmental origins of health and disease hypothesis postulate that in utero exposures can have later-in-life effects on the developing fetus and can alter fetal gene expression. This study aimed to determine whether epigenetic modifications occurred following in utero TPHP exposure in mice and whether these changes were dose and/or sex-dependent. METHODS Pregnant C57Bl/6 mice were treated with 0, 5, 25, or 50 mg/kg of TPHP on gestational days (GD) 8, 10, 12, and 14 via intraperitoneal injection and fetal livers were collected on GD 19. Changes in the levels of acetylation of H3 and H4, as well as methylation of H3K9 and global DNA methylation were assessed in the fetal livers by western blot. RESULTS Results showed that there was a significant decrease in fetal DNA methylation following in utero exposure to 50 mg/kg TPHP compared to the control (0 mg/kg) independent of the sex of the fetus. While there were no significant alterations compared to controls in any histone modifications at any dose or sex following in utero TPHP exposure, we did note a decrease (t test, p = .025) in the levels of acetylated H3 in males versus females following a maternal dose of 25 mg/kg. The monomethylated H3K9 levels were also increased in females versus males following exposure to TPHP at 5 mg/kg (p = .018) and 25 mg/kg (p = .027) when analyzed via unpaired t tests, although not significantly different from controls. DISCUSSION The results suggest that gestational TPHP exposure can induce epigenetic modifications in murine fetal tissue. Specifically, global DNA methylation levels were downregulated in response to TPHP. Additionally, males appear to be more sensitive to TPHP-induced histone modifications than females. These data support the need for further studies investigating the impacts of gestational TPHP exposure on the developing fetus.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sydney H Wolpert
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Nicola A Philbrook
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
8
|
Li M, Liu G, Yuan LX, Yang J, Liu J, Li Z, Yang C, Wang J. Triphenyl phosphate (TPP) promotes hepatocyte toxicity via induction of endoplasmic reticulum stress and inhibition of autophagy flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156461. [PMID: 35660595 DOI: 10.1016/j.scitotenv.2022.156461] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPP), a commonly used organophosphate flame retardant, is frequently found in environmental and biota samples, indicating widespread human exposure. Recent studies have shown that TPP causes hepatotoxicity, but the underlying cellular mechanisms are not fully elucidated. Here, by using normal hepatocyte AML12 cells as a model, we showed that TPP induced apoptotic cell death. RNA sequencing analyses revealed that differentially expressed genes induced by TPP were related to endoplasmic reticulum (ER) stress and autophagy. Immunostaining and western blot results further confirmed that TPP activated ER stress. Interestingly, though TPP increased LC3-II, a canonical marker for autophagy, TPP inhibited autophagy flux rather than induced autophagy. Interestingly, TPP-induced ER stress facilitated autophagy flux inhibition and apoptosis. Furthermore, inhibition of autophagy aggravated, and activation of autophagy attenuated apoptosis induced by TPP. Collectively, these results uncovered that ER stress and autophagy flux inhibition were responsible for TPP-induced apoptosis in mouse hepatocytes. Thus, our foundlings provided novel insight into the potential mechanisms of TPP-induced hepatocyte toxicity.
Collapse
Affiliation(s)
- Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li-Xia Yuan
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jing Liu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Artemisinin Research Center, Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
9
|
Holmes TH, Winn LM. DNA damage, DNA repair gene expression, and topoisomerase IIα activity in CD-1 mice following in utero benzene exposure. Toxicol Lett 2022; 368:47-55. [PMID: 35963423 DOI: 10.1016/j.toxlet.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Benzene is an environmental toxicant and known human carcinogen. Recent epidemiological studies show a relationship between exposure to benzene in pregnant women and increased incidence of childhood leukemias. Studies in murine models demonstrate a relationship between carcinogenicity and in utero benzene exposure which was sex dependent, thus the cellular mechanisms of benzene toxicity by sex require further studies. A hypothesized mechanism of benzene-induced in utero carcinogenicity is through increased DNA damage and reduced fetal DNA repair capacity. This includes the potential inhibition of topoisomerase IIα (topo IIα), in part, to generate double stranded DNA (dsDNA) breaks and induction of error-prone DNA repair. Using a mouse model of transplacental benzene carcinogenicity, gestational day (GD) 14 fetal livers were harvested 2, 6, and 24 h following maternal exposure to 200 mg/kg benzene and used to assess DNA damage, DNA repair gene expression and topo IIα activity. DNA damage, measured by levels of modified histone H2AX (γH2AX), is significantly increased in benzene exposed pups, with sex-dependent significance seen only in female pups. Comet assay results confirmed that benzene exposure in utero induces dsDNA damage in the GD14 fetal liver. Genes involved in DNA repair were assessed, and DNA repair gene expression changes were observed after 24 h in genes related to nucleotide excision repair, homologous recombination, and non-homologous end-joining. There were no significant differences in topo IIα activity in GD14 fetal livers at any timepoint, or between sexes. Overall, this study shows that 200 mg/kg benzene exposure induces dsDNA damage and alters fetal DNA repair gene expression in utero, without perturbing fetal topo IIα in CD-1 mice.
Collapse
Affiliation(s)
- Trent H Holmes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
10
|
Liu Y, Xu M, Le Y, Wang W, Li Y, Li X, Wang C. Sex-dependent effect of triphenyl phosphate on hepatic energy metabolism at the intersection of diet pattern in pubertal mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113850. [PMID: 36068767 DOI: 10.1016/j.ecoenv.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPhP) is mostly residual in fat-rich foodstuff and ingestion is the main route for adolescents' exposure. As a typical metabolic disruptor, however, sex-specific effect of TPhP-high fat diet (HFD) co-exposure in adolescent remains unknown. This study revealed that HFD exacerbated systematic inflammation and insulin insensitivity in female mice at pubertal stage after exposure to 25 mg/kg TPhP or above. Notably, the pattern of sexual selective metabolic disruption caused by TPhP was irrespective of diet after examined mice both in HFD and normal diet feeding. Female mice favored the energy storage in forms of D-glucose 6-phosphate, D-fructose 6-phosphate and triglyceride. That was further supported by mRNA levels of key enzymes in glycolysis, gluconeogenesis, and lipid metabolism. Contrastingly, the elevation of the corresponding genes ensuing by the depleted metabolites were observed in males. In mechanistic investigation, we observed a declination of serum estrogen, a master of energy homeostasis, in both sexes, irrespective of diet. However, only male mice displayed estrogen-hypothalamus negative feedback, supporting by the upregulation of gonadotropin-releasing hormone. Rather than the well-recognized estrogen receptor α, hepatic G protein-coupled estrogen receptor manifested sexual dichotomy, which desensitized to estrogenic response only in females. Collectively, this study posited that females were more susceptible to store energy under TPhP-HFD than males during pubertal partially through estrogenic pathway.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yi Li
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Xiaowen Li
- Cangzhou Medical College, Cangzhou, Hebei, People's Republic of China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
13
|
Bommarito PA, Welch BM, Keil AP, Baker GP, Cantonwine DE, McElrath TF, Ferguson KK. Prenatal exposure to consumer product chemical mixtures and size for gestational age at delivery. Environ Health 2021; 20:68. [PMID: 34112176 PMCID: PMC8194159 DOI: 10.1186/s12940-021-00724-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/19/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND While fetal growth is a tightly regulated process, it is sensitive to environmental exposures that occur during pregnancy. Many commonly used consumer products contain chemicals that can disturb processes underlying fetal growth. However, mixtures of these chemicals have been minimally examined. We investigated associations between prenatal exposure to 33 consumer product chemicals (nine organophosphate ester flame retardant [OPE] metabolites, 12 phthalate metabolites, and 12 phenols) and the odds of small- or large-for-gestational age (SGA and LGA) births. METHODS This case-control study was comprised of SGA (N = 31), LGA (N = 28), and appropriate for gestational age control (N = 31) births selected from the larger LIFECODES cohort. Biomarkers of exposure to consumer product chemicals were quantified in maternal urine collected from up to three study visits during pregnancy. In a single-pollutant approach, odds ratios (OR) and 95% confidence intervals (CI) of SGA and LGA associated with an interquartile range (IQR)-increase in exposure biomarkers were estimated using multinomial logistic regression. In a multi-pollutant approach, quantile g-computation was used to jointly estimate the OR (95% CI) of SGA and LGA per simultaneous one quartile-change in all biomarkers belonging to each chemical class. RESULTS Among the 33 biomarkers analyzed, 20 were detected in at least 50% of the participants. After adjusting for potential confounders, we observed reduced odds of LGA in association with higher urinary concentrations of several exposure biomarkers. For example, an IQR-increase in the OPE metabolite, diphenyl phosphate, was associated with lower odds of LGA (OR: 0.40 [95% CI: 0.18, 0.87]). Using quantile g-computation, we estimated lower odds of an LGA birth for higher OPE metabolite concentrations (OR: 0.49 [95% CI: 0.27, 0.89]) and phthalate metabolite concentrations (OR: 0.23 [95% CI: 0.07, 0.73]). Associations between consumer product chemicals and SGA were largely null. CONCLUSIONS Joint exposure to OPEs and phthalates was associated with lower odds of delivering LGA. Associations with LGA could indicate a specific impact of these exposures on the high end of the birth weight spectrum. Future work to understand this nuance in the associations between consumer product chemical mixtures and fetal growth is warranted.
Collapse
Affiliation(s)
- P. A. Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, NC 27709 USA
| | - B. M. Welch
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, NC 27709 USA
| | - A. P. Keil
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, NC 27709 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599 USA
| | - G. P. Baker
- NSF International, 789 N. Dixboro Road, Ann Arbor, MI 48105 USA
| | - D. E. Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - T. F. McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - K. K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, NC 27709 USA
| |
Collapse
|
14
|
Varshavsky JR, Robinson JF, Zhou Y, Puckett KA, Kwan E, Buarpung S, Aburajab R, Gaw SL, Sen S, Gao S, Smith SC, Park JS, Zakharevich I, Gerona RR, Fisher SJ, Woodruff TJ. Organophosphate Flame Retardants, Highly Fluorinated Chemicals, and Biomarkers of Placental Development and Disease During Mid-Gestation. Toxicol Sci 2021; 181:215-228. [PMID: 33677611 PMCID: PMC8163039 DOI: 10.1093/toxsci/kfab028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs) are chemicals that may contribute to placenta-mediated complications and adverse maternal-fetal health risks. Few studies have investigated these chemicals in relation to biomarkers of effect during pregnancy. We measured 12 PFASs and four urinary OPFR metabolites in 132 healthy pregnant women during mid-gestation and examined a subset with biomarkers of placental development and disease (n = 62). Molecular biomarkers included integrin alpha-1 (ITGA1), vascular endothelial-cadherin (CDH5), and matrix metalloproteinase-1 (MMP1). Morphological endpoints included potential indicators of placental stress and the extent of cytotrophoblast (CTB)-mediated uterine artery remodeling. Serum PFASs and urinary OPFR metabolites were detected in ∼50%-100% of samples. The most prevalent PFASs were perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS), with geometric mean (GM) levels of ∼1.3-2.8 (95% confidence limits from 1.2-3.1) ng/ml compared to ≤0.5 ng/ml for other PFASs. Diphenyl phosphate (DPhP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) were the most prevalent OPFR metabolites, with GMs of 2.9 (95% CI: 2.5-3.4) and 3.6 (95% CI: 2.2-3.1) ng/ml, respectively, compared to <1 ng/ml for bis(2-chloroethyl) phosphate (BCEP) and bis(1-chloro-2-propyl) phosphate (BCIPP). We found inverse associations of PFASs or OPFRs with ITGA1 or CDH5 immunoreactivity and positive associations with indicators of placental stress in multiple basal plate regions, indicating these chemicals may contribute to abnormal placentation and future health risks. Associations with blood pressure and lipid concentrations warrant further examination. This is the first study of these chemicals with placental biomarkers measured directly in human tissues and suggests specific biomarkers are sensitive indicators of exposure during a vulnerable developmental period.
Collapse
Affiliation(s)
- Julia R Varshavsky
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, California 94158
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Joshua F Robinson
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, California 94158
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Yan Zhou
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Kenisha A Puckett
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Elaine Kwan
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Sirirak Buarpung
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Rayyan Aburajab
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Stephanie L Gaw
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Sabrina Crispo Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - Igor Zakharevich
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Roy R Gerona
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Susan J Fisher
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, California 94158
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| |
Collapse
|
15
|
Wang X, Chen P, Zhao L, Zhu L, Wu F. Transplacental Behaviors of Organophosphate Tri- and Diesters Based on Paired Human Maternal and Cord Whole Blood: Efficiencies and Impact Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3091-3100. [PMID: 33397100 DOI: 10.1021/acs.est.0c06095] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphate tri- and diesters (tri-OPEs and di-OPEs) were quantified in 63 paired maternal and cord whole blood samples collected in Hubei, China, in which tri-o-cresyl phosphate (ToCP) was predominant. The transplacental transfer efficiencies (expressed as cord blood to maternal blood (C:M) concentration ratios) of aryl-tri-OPEs, such as ToCP (1.61) and triphenyl phosphate (TPHP) (1.06), were higher than those of alkyl-tri-OPEs (0.66-0.76). For the target tri-OPEs and some traditional organic compounds, the C:M ratios first increased with log Kow in the range of 1.63-5.23 and then decreased, showing a parabolic relationship. However, ToCP, with a log Kow of 6.34, deviated from this relationship and displayed the highest C:M ratio (1.61). Molecular docking indicated a very strong binding affinity between ToCP and transthyretin, suggesting that ToCP might be actively transported by transthyretin in the placenta. The di-OPE levels in the blood samples were significantly lower than the corresponding tri-OPE levels, and those in the cord blood were influenced not only by their transplacental behaviors but also by their low excretion rates and the metabolic characteristics of their parent compounds in the fetus. This study provides useful information for accurately assessing the health risks posed by tri-OPEs to pregnant women and fetuses.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Pengyu Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| |
Collapse
|