1
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
3
|
Viable Ednra Y129F mice feature human mandibulofacial dysostosis with alopecia (MFDA) syndrome due to the homologue mutation. Mamm Genome 2016; 27:587-598. [PMID: 27671791 PMCID: PMC5110705 DOI: 10.1007/s00335-016-9664-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 12/24/2022]
Abstract
Animal models resembling human mutations are valuable tools to research the features of complex human craniofacial syndromes. This is the first report on a viable dominant mouse model carrying a non-synonymous sequence variation within the endothelin receptor type A gene (Ednra c.386A>T, p.Tyr129Phe) derived by an ENU mutagenesis program. The identical amino acid substitution was reported recently as disease causing in three individuals with the mandibulofacial dysostosis with alopecia (MFDA, OMIM 616367) syndrome. We performed standardized phenotyping of wild-type, heterozygous, and homozygous EdnraY129F mice within the German Mouse Clinic. Mutant mice mimic the craniofacial phenotypes of jaw dysplasia, micrognathia, dysplastic temporomandibular joints, auricular dysmorphism, and missing of the squamosal zygomatic process as described for MFDA-affected individuals. As observed in MFDA-affected individuals, mutant EdnraY129F mice exhibit hearing impairment in line with strong abnormalities of the ossicles and further, reduction of some lung volumetric parameters. In general, heterozygous and homozygous mice demonstrated inter-individual diversity of expression of the craniofacial phenotypes as observed in MFDA patients but without showing any cleft palates, eyelid defects, or alopecia. Mutant EdnraY129F mice represent a valuable viable model for complex human syndromes of the first and second pharyngeal arches and for further studies and analysis of impaired endothelin 1 (EDN1)–endothelin receptor type A (EDNRA) signaling. Above all, EdnraY129F mice model the recently published human MFDA syndrome and may be helpful for further disease understanding and development of therapeutic interventions.
Collapse
|
4
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 18. Hypogonadotropic Hypogonadisms. Pediatric and Pubertal Presentations. Pediatr Dev Pathol 2016; 19:291-309. [PMID: 27135528 DOI: 10.2350/16-04-1810-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
5
|
Gordon C, Weaver K, Zechi-Ceide R, Madsen E, Tavares A, Oufadem M, Kurihara Y, Adameyko I, Picard A, Breton S, Pierrot S, Biosse-Duplan M, Voisin N, Masson C, Bole-Feysot C, Nitschké P, Delrue MA, Lacombe D, Guion-Almeida M, Moura P, Garib D, Munnich A, Ernfors P, Hufnagel R, Hopkin R, Kurihara H, Saal H, Weaver D, Katsanis N, Lyonnet S, Golzio C, Clouthier D, Amiel J. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet 2015; 96:519-31. [PMID: 25772936 DOI: 10.1016/j.ajhg.2015.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws.
Collapse
|
6
|
Abdel-Meguid N, Gebril OH, Abdelraouf ER, Shafie MA, Bahgat M. Johnson-McMillin Microtia Syndrome: New Additional Family. J Family Med Prim Care 2014; 3:275-8. [PMID: 25374870 PMCID: PMC4209688 DOI: 10.4103/2249-4863.141639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Microtia is a congenital anomaly that is found with different prevalence among various populations. The exact etiology of ear anomalies is still unknown. We describe a new additional family with this rare disorder; Johnson-McMillin syndrome (JMS) where mother, son, and distant grandmother have multiple features of JMS in the form of microtia, facial asymmetry, ear malformation, hearing defect, and hypotrichosis. Variable presentations in this family could be referred to phenotype variation supporting an autosomal dominant pattern of inheritance. We observed that the mother was very sad and suffered from feelings of guilt. We found that she had isolated herself from family and community out of fear of being stigmatized and hurt. We concluded that the occurrence of microtia is of public health importance, adhering to traditional marriage customs in Egypt increases women's risk of giving birth to a disabled child, yet the mothers are blamed and shamed for their children's birth defects by their husbands, families, and communities, while the fathers are not stigmatized.
Collapse
Affiliation(s)
- Nagwa Abdel-Meguid
- Department of Children with Special Needs, Medical Division, National Research Centre, Cairo, Egypt
| | - Ola Hosny Gebril
- Department of Children with Special Needs, Medical Division, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Department of Children with Special Needs, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohammed Akmal Shafie
- Department of Children with Special Needs, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohammed Bahgat
- Department of Ear Nose and Throat, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Zechi-Ceide RM, Guion-Almeida ML, Jehee FS, Rocha K, Passos-Bueno MRS. Mandibulofacial dysostosis, severe lower eyelid coloboma, cleft palate, and alopecia: A new distinct form of mandibulofacial dysostosis or a severe form of Johnson-McMillin syndrome? Am J Med Genet A 2010; 152A:1838-40. [PMID: 20583178 DOI: 10.1002/ajmg.a.33477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe a patient with a phenotype characterized by mandibulofacial dysostosis with severe lower eyelid coloboma, cleft palate, abnormal ears, alopecia, delayed eruption and crowded teeth, and sensorioneural hearing loss. The karyotype and the screening for mutations in the coding region of TCOF1 gene were normal. The clinical signs of our case overlap the new mandibulofacial dysostosis described by Stevenson et al. [2007] and the case with Johnson-McMillin syndrome described by Cushman et al. [2005]. The similar clinical signs, mainly, the severe facial involvement observed in these cases suggest that they can represent a new distinct form of mandibulofacial dysostosis or the end of the spectrum of Johnson-McMillin syndrome.
Collapse
Affiliation(s)
- Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies (HRAC), University of São Paulo, Bauru, SP, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Nousbeck J, Spiegel R, Ishida-Yamamoto A, Indelman M, Shani-Adir A, Adir N, Lipkin E, Bercovici S, Geiger D, van Steensel MA, Steijlen PM, Bergman R, Bindereif A, Choder M, Shalev S, Sprecher E. Alopecia, neurological defects, and endocrinopathy syndrome caused by decreased expression of RBM28, a nucleolar protein associated with ribosome biogenesis. Am J Hum Genet 2008; 82:1114-21. [PMID: 18439547 DOI: 10.1016/j.ajhg.2008.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022] Open
Abstract
Single-gene disorders offer unique opportunities to shed light upon fundamental physiological processes in humans. We investigated an autosomal-recessive phenotype characterized by alopecia, progressive neurological defects, and endocrinopathy (ANE syndrome). By using homozygosity mapping and candidate-gene analysis, we identified a loss-of-function mutation in RBM28, encoding a nucleolar protein. RBM28 yeast ortholog, Nop4p, was previously found to regulate ribosome biogenesis. Accordingly, electron microscopy revealed marked ribosome depletion and structural abnormalities of the rough endoplasmic reticulum in patient cells, ascribing ANE syndrome to the restricted group of inherited disorders associated with ribosomal dysfunction.
Collapse
|
9
|
|