1
|
Ribaudo G, Yun X, Ongaro A, Oselladore E, Ng JPL, Haynes RK, Law BYK, Memo M, Wong VKW, Coghi P, Gianoncelli A. Combining computational and experimental evidence on the activity of antimalarial drugs on papain-like protease of SARS-CoV-2: A repurposing study. Chem Biol Drug Des 2023; 101:809-818. [PMID: 36453012 DOI: 10.1111/cbdd.14187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The development of inhibitors that target the papain-like protease (PLpro) has the potential to counteract the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent causing coronavirus disease 2019 (COVID-19). Based on a consideration of its several downstream effects, interfering with PLpro would both revert immune suppression exerted by the virus and inhibit viral replication. By following a repurposing strategy, the current study evaluates the potential of antimalarial drugs as PLpro inhibitors, and thereby the possibility of their use for treatment of SARS-CoV-2 infection. Computational tools were employed for structural analysis, molecular docking, and molecular dynamics simulations to screen antimalarial drugs against PLpro, and in silico data were validated by in vitro experiments. Virtual screening highlighted amodiaquine and methylene blue as the best candidates, and these findings were complemented by the in vitro results that indicated amodiaquine as a μM PLpro deubiquitinase inhibitor. The results of this study demonstrate that the computational workflow adopted here can correctly identify active compounds. Thus, the highlighted antimalarial drugs represent a starting point for the development of new PLpro inhibitors through structural optimization.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Richard K Haynes
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Clark RL. Teratogen update: Malaria in pregnancy and the use of antimalarial drugs in the first trimester. Birth Defects Res 2020; 112:1403-1449. [PMID: 33079495 DOI: 10.1002/bdr2.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Malaria is a particular problem in pregnancy because of enhanced sensitivity, the possibility of placental malaria, and adverse effects on pregnancy outcome. Artemisinin-containing combination therapies (ACTs) are the most effective antimalarials known. WHO recommends 7-day quinine therapy for uncomplicated Plasmodium falciparum malaria in the first trimester despite the superior tolerability and efficacy of 3-day ACT regimens because artemisinins caused embryolethality and/or cardiovascular malformations at relatively low doses in rats, rabbits, and monkeys. The developmental toxicity of artesunate, artemether, and DHA were similar in rats but artesunate was embryotoxic at lower doses in rabbits (5 mg/kg/day) than artemether (no effect level = 25 mg/kg/day). In clinical studies in Africa, treatment with artemether-lumefantrine in the first trimester was observed to be highly efficacious and the miscarriage rate (≤3.1%) was similar to no antimalarial treatment (2.6%). When data from the first-trimester use of largely artesunate-based therapies in Thailand were pooled together, there was no difference in miscarriage rate compared to quinine. However, individually, artesunate-mefloquine was associated with a higher miscarriage rate (15/71 = 21%) compared to other artemisinin-based therapies including 7-day artesunate + clindamycin (2/50 = 4%) and quinine (92/842 = 11%). Thus, appropriate statistical comparisons of individual ACT groups are needed prior to assuming that they all have the same risk for developmental toxicity. Current limitations in the assessment of the safety of ACTs in the first trimester are a lack of exposures early in gestation (gestational weeks 6-7), limited postnatal evaluation for cardiovascular malformations, and the pooling of all ACTs for the assessment of risk.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Saint Augustine, Florida, USA
| |
Collapse
|
3
|
González R, Pons-Duran C, Bardají A, Leke RGF, Clark R, Menendez C. Systematic review of artemisinin embryotoxicity in animals: Implications for malaria control in human pregnancy. Toxicol Appl Pharmacol 2020; 402:115127. [PMID: 32622917 DOI: 10.1016/j.taap.2020.115127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Pregnant women are one of the most susceptible and vulnerable groups to malaria, the most important parasitic disease worldwide. Artemisinin-based combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in all population groups including pregnant women. However, due to the embryotoxicity observed in animal studies, ACTs have long been contraindicated during the first trimester in pregnant women. Despite the safety concerns raised in pre-clinical studies, recent findings on ACTs's use in pregnant women appear to be reassuring regarding safety and have prompted a revision of malaria treatment guidelines for first trimester of pregnancy. To contribute to the risk-benefit assessment of ACTs, we conducted a systematic literature review of animal studies published between 2007 and 2019, which evaluated the embryotoxic effects of artemisinin and its derivatives among pregnant mammals. Eighteen experimental studies fitted the inclusion criteria. These studies confirmed and further characterized the severe embryolethal and embryotoxic dose-dependent effects of artemisinin and its derivatives when administered during the organogenesis period in rats, rabbits and monkeys. Timing of administration and dosage of the drug were found to be key factors in the appearance of embryo damage. Overall, the translation of the findings of artemisinin derivatives use in animal studies to pregnant women remains disturbing. Thus, a policy change in the use of ACTs during the first trimester in pregnant women for the treatment of uncomplicated malaria does not seem pertinent and if implemented, it should be accompanied by solid pharmacovigilance systems, which are challenging to establish in malaria endemic countries.
Collapse
Affiliation(s)
- Raquel González
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Clara Pons-Duran
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Rose G F Leke
- Department of Microbiology, Immunology and Haematology, Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon
| | - Robert Clark
- Artemis Pharmaceutical Research, Jacksonville, Florida, USA
| | - Clara Menendez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Manhiça Health Research Center (CISM), Manhiça, Mozambique
| |
Collapse
|
4
|
Golenser J, Salaymeh N, Higazi AA, Alyan M, Daif M, Dzikowski R, Domb AJ. Treatment of Experimental Cerebral Malaria by Slow Release of Artemisone From Injectable Pasty Formulation. Front Pharmacol 2020; 11:846. [PMID: 32595499 PMCID: PMC7303303 DOI: 10.3389/fphar.2020.00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria caused by Plasmodium falciparum causes numerous cases of morbidity with about 400,000 deaths yearly owing, mainly, to inflammation leading to cerebral malaria (CM). CM conventionally is treated by repetitive administration of anti-plasmodial drugs and supportive non-specific drugs, for about a week. A mouse model of CM caused by Plasmodium berghei ANKA, in which brain and systemic clinical pathologies occur followed by sudden death within about a week, was used to study the effect of artemisone, a relatively new artemisinin, within an injectable pasty polymer formulated for its controlled release. The parasites were exposed to the drug over several days at a non-toxic concentrations for the mice but high enough to affect the parasites. Artemisone was also tested in cultures of bacteria, cancer cells and P. falciparum to evaluate the specificity and suitability of these cells for examining the release of artemisone from its carrier. Cultures of P. falciparum were the most suitable. Artemisone released from subcutaneous injected poly(sebacic acid-ricinoleic acid) (PSARA) pasty polymer, reduced parasitemias in infected mice, prolonged survival and prevented death in most of the infected mice. Successful prophylactic treatment before infection proved that there was a slow release of the drug for about a week, which contrasts with the three hour half-life that occurs after injection of just the drug. Treatment with artemisone within the polymer, even at a late stage of the disease, helped to prevent or, at least, delay accompanying severe symptoms. In some cases, treatment prevented death of CM and the mice died later of anemia. Postponing the severe clinical symptoms is also beneficial in cases of human malaria, giving more time for an appropriate diagnosis and treatment before severe symptoms appear. The method presented here may also be useful for combination therapy of anti-plasmodial and immunomodulatory drugs.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | | | - Mohammed Alyan
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| | - Mahran Daif
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | - Abraham J. Domb
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| |
Collapse
|
5
|
Bagheri AR, Golenser J, Greiner A. Controlled and manageable release of antimalarial Artemisone by encapsulation in biodegradable carriers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Sánchez-Sánchez R, Vázquez P, Ferre I, Ortega-Mora LM. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem 2019; 18:1304-1323. [PMID: 30277158 PMCID: PMC6340160 DOI: 10.2174/1568026618666181002113617] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a live-attenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against ne-osporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treat-ments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporo-sis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
7
|
Golenser J, Buchholz V, Bagheri A, Nasereddin A, Dzikowski R, Guo J, Hunt NH, Eyal S, Vakruk N, Greiner A. Controlled release of artemisone for the treatment of experimental cerebral malaria. Parasit Vectors 2017; 10:117. [PMID: 28249591 PMCID: PMC5333427 DOI: 10.1186/s13071-017-2018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/07/2017] [Indexed: 11/24/2022] Open
Abstract
Background Cerebral malaria (CM) is a leading cause of malarial mortality resulting from infection by Plasmodium falciparum. Treatment commonly involves adjunctive care and injections or transfusion of artemisinins. All artemisinins that are in current use are metabolized to dihydroxyartemisinin (DHA), to which there is already some parasite resistance. We used artemisone, a derivative that does not convert to DHA, has improved pharmacokinetics and anti-plasmodial activity and is also anti-inflammatory (an advantage given the immunopathological nature of CM). Methods We examined controlled artemisone release from biodegradable polymers in a mouse CM model. This would improve treatment by exposing the parasites for a longer period to a non-toxic drug concentration, high enough to eliminate the pathogen and prevent CM. The preparations were inserted into mice as prophylaxis, early or late treatment in the disease course. Results The most efficient formulation was a rigid polymer, containing 80 mg/kg artemisone, which cured all of the mice when used as early treatment and 60% of the mice when used as a very late treatment (at which stage all control mice would die of CM within 24 h). In those mice that were not completely cured, relapse followed a latent period of more than seven days. Prophylactic treatment four days prior to the infection prevented CM. We also measured the amount of artemisone released from the rigid polymers using a bioassay with cultured P. falciparum. Significant amounts of artemisone were released throughout at least ten days, in line with the in vivo prophylactic results. Conclusions Overall, we demonstrate, as a proof-of-concept, a controlled-sustained release system of artemisone for treatment of CM. Mice were cured or if treated at a very late stage of the disease, depicted a delay of a week before death. This delay would enable a considerable time window for exact diagnosis and appropriate additional treatment. Identical methods could be used for other parasites that are sensitive to artemisinins (e.g. Toxoplasma gondii and Neospora caninum).
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel.
| | - Viola Buchholz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Amir Bagheri
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel.,Al-Quds University, Abu Dis, The Palestinian Authority
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel
| | - Jintao Guo
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia.,State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nicholas H Hunt
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Sara Eyal
- Institute of Drug Research, School of Pharmacy, HU-HMS, Jerusalem, Israel
| | - Natalia Vakruk
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel.,Institute of Drug Research, School of Pharmacy, HU-HMS, Jerusalem, Israel
| | - Andreas Greiner
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| |
Collapse
|
8
|
Bagheri AR, Agarwal S, Golenser J, Greiner A. Unlocking Nanocarriers for the Programmed Release of Antimalarial Drugs. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1600011. [PMID: 31565264 PMCID: PMC6607132 DOI: 10.1002/gch2.201600011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/04/2016] [Indexed: 06/10/2023]
Abstract
A programmable release system with wide range of release profiles of the antimalarial artemisone (ART) from fibrous nanocarriers (NFN) is presented. This is achieved following a new paradigm of using ART-loaded NFN in infusion system of hydrophobic drug eluting nanocarriers, adapted to clinical applications. Very importantly, under these conditions ART did not degrade as it was observed in solution.
Collapse
Affiliation(s)
- Amir Reza Bagheri
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Seema Agarwal
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Jacob Golenser
- Department of Microbiology and Molecular GeneticsThe Kuvin Centre for the Study of Infectious and Tropical DiseasesThe Hebrew University of Jerusalem91120JerusalemIsrael
| | - Andreas Greiner
- Macromolecular ChemistryBavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| |
Collapse
|
9
|
Guiguemde WA, Hunt NH, Guo J, Marciano A, Haynes RK, Clark J, Guy RK, Golenser J. Treatment of murine cerebral malaria by artemisone in combination with conventional antimalarial drugs: antiplasmodial effects and immune responses. Antimicrob Agents Chemother 2014; 58:4745-54. [PMID: 24913162 PMCID: PMC4135990 DOI: 10.1128/aac.01553-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 05/27/2014] [Indexed: 01/10/2023] Open
Abstract
The decreasing effectiveness of antimalarial therapy due to drug resistance necessitates constant efforts to develop new drugs. Artemisinin derivatives are the most recent drugs that have been introduced and are considered the first line of treatment, but there are already indications of Plasmodium falciparum resistance to artemisinins. Consequently, drug combinations are recommended for prevention of the induction of resistance. The research here demonstrates the effects of novel combinations of the new artemisinin derivative, artemisone, a recently described 10-alkylamino artemisinin derivative with improved antimalarial activity and reduced neurotoxicity. We here investigate its ability to kill P. falciparum in a high-throughput in vitro assay and to protect mice against lethal cerebral malaria caused by Plasmodium berghei ANKA when used alone or in combination with established antimalarial drugs. Artemisone effects against P. falciparum in vitro were synergistic with halofantrine and mefloquine, and additive with 25 other drugs, including chloroquine and doxycycline. The concentrations of artemisone combinations that were toxic against THP-1 cells in vitro were much higher than their effective antimalarial concentration. Artemisone, mefloquine, chloroquine, or piperaquine given individually mostly protected mice against cerebral malaria caused by P. berghei ANKA but did not prevent parasite recrudescence. Combinations of artemisone with any of the other three drugs did completely cure most mice of malaria. The combination of artemisone and chloroquine decreased the ratio of proinflammatory (gamma interferon, tumor necrosis factor) to anti-inflammatory (interleukin 10 [IL-10], IL-4) cytokines in the plasma of P. berghei-infected mice. Thus, artemisone in combinations with other antimalarial drugs might have a dual action, both killing parasites and limiting the potentially deleterious host inflammatory response.
Collapse
Affiliation(s)
- W Armand Guiguemde
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicholas H Hunt
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Jintao Guo
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Annael Marciano
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Julie Clark
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jacob Golenser
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman K, Bentura-Marciano A, Haynes RK, Weiss L, Allon N, Ovadia H, Golenser J, Barenholz Y. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PLoS One 2013; 8:e72722. [PMID: 23991146 PMCID: PMC3753236 DOI: 10.1371/journal.pone.0072722] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
Cerebral malaria is the most severe complication of Plasmodium falciparum infection, and a leading cause of death in children under the age of five in malaria-endemic areas. We report high therapeutic efficacy of a novel formulation of liposome-encapsulated water-soluble glucocorticoid prodrugs, and in particular β-methasone hemisuccinate (BMS), for treatment of experimental cerebral malaria (ECM), using the murine P. berghei ANKA model. BMS is a novel derivative of the potent steroid β-methasone, and was specially synthesized to enable remote loading into nano-sterically stabilized liposomes (nSSL), to form nSSL-BMS. The novel nano-drug, composed of nSSL remote loaded with BMS, dramatically improves drug efficacy and abolishes the high toxicity seen upon administration of free BMS. nSSL-BMS reduces ECM rates in a dose-dependent manner and creates a survival time-window, enabling administration of an antiplasmodial drug, such as artemisone. Administration of artemisone after treatment with the nSSL-BMS results in complete cure. Treatment with BMS leads to lower levels of cerebral inflammation, demonstrated by changes in cytokines, chemokines, and cell markers, as well as diminished hemorrhage and edema, correlating with reduced clinical score. Administration of the liposomal formulation results in accumulation of BMS in the brains of sick mice but not of healthy mice. This steroidal nano-drug effectively eliminates the adverse effects of the cerebral syndrome even when the treatment is started at late stages of disease, in which disruption of the blood-brain barrier has occurred and mice show clear signs of neurological impairment. Overall, sequential treatment with nSSL-BMS and artemisone may be an efficacious and well-tolerated therapy for prevention of CM, elimination of parasites, and prevention of long-term cognitive damage.
Collapse
Affiliation(s)
- Judith H. Waknine-Grinberg
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University - Hadassah Medical School, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Simcha Even-Chen
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Jasmine Avichzer
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Annael Bentura-Marciano
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Richard K. Haynes
- Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lola Weiss
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | - Nahum Allon
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Haim Ovadia
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University - Hadassah Medical School, Jerusalem, Israel
- * E-mail: (YB), (JG)
| |
Collapse
|
11
|
Development of artemisinin compounds for cancer treatment. Invest New Drugs 2012; 31:230-46. [DOI: 10.1007/s10637-012-9873-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
|
12
|
Abolaji AO, Eteng MU, Ebong PE, Brisibe EA, Dar A, Kabir N, Choudhary MI. A safety assessment of the antimalarial herb Artemisia annua during pregnancy in Wistar rats. Phytother Res 2012; 27:647-54. [PMID: 22736625 DOI: 10.1002/ptr.4760] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 11/11/2022]
Abstract
Artemisia annua is a Chinese antimalarial herb that has been used for more than 2000 years. The maternal and foetal safety of the ethanolic leaf extract of therapeutically active Artemisia annua (EAA), with previously determined artemisinin yield of 1.098% was evaluated in Wistar rats. Twenty pregnant rats, divided into four study groups of saline treated (control), and test groups administered orally with 100, 200 and 300 mg/kg body weights of EAA, respectively, from gestation days (GD) 8 to 19. Following overnight fast, animals were sacrificed on GD 20, and maternal blood was collected to evaluate biochemical and haematological markers. Foetuses were carefully removed, weighed, and observed for any possible malformation. Biochemical and haematological studies revealed that EAA did not result in maternal hepatotoxicity, haematotoxicity, and hyperlipidemia. While litter size significantly decreased (p < 0.05) at 100 mg/kg EAA, maternal estrogen levels decreased in all the EAA-treated groups. Non-viable (21%) and malformed (31%) foetuses were observed at the 300 mg/kg dose of EAA, which implies that although consumption of the leaf extract may not predispose users to hepatotoxicity, haematotoxicity, and hyperlipidemia, it should be taken with caution during pregnancy due to possible risk of embryotoxicity at concentrations higher than the therapeutic dose.
Collapse
Affiliation(s)
- Amos O Abolaji
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mazuz ML, Haynes R, Shkap V, Fish L, Wollkomirsky R, Leibovich B, Molad T, Savitsky I, Golenser J. Neospora caninum: in vivo and in vitro treatment with artemisone. Vet Parasitol 2011; 187:99-104. [PMID: 22260899 DOI: 10.1016/j.vetpar.2011.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Neosporosis caused by Neospora caninum has global economic, clinical, and epidemiological impacts, mainly in the cattle industry. Currently, there is no useful drug for treatment of neosporosis. This publication is the first to describe the significant benefits that artemisone has on Neospora infections both in vitro and in vivo. Artemisone is a new semi-synthetic 10-alkylamino artemisinin that is superior to other artemisinin derivatives in terms of its significantly higher antimalarial activity, its tolerance in vivo, lack of detectable neurotoxic potential, improved in vivo pharmacokinetics and metabolic stability. Low micromolar concentrations of artemisone inhibited in vitro Neospora development. Prophylactic and post-infection treatment profoundly reduced the number of infected cells and parasites per cell. In the in vivo gerbil model, a non-toxic dose prevented typical cerebral symptoms, in most animals. There were no signs of clinical symptoms and brain PCR was negative. Most treated gerbils produced high specific antibody titer and were protected against a challenge. Overall, artemisone could be considered as a future drug for neosporosis.
Collapse
Affiliation(s)
- Monica L Mazuz
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Erickson R, Defensor E, Fairchild D, Mirsalis J, Steinmetz K. Neurological assessments after treatment with the antimalarial β-arteether in neonatal and adult rats. Neurotoxicology 2011; 32:432-40. [DOI: 10.1016/j.neuro.2011.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 03/02/2011] [Indexed: 11/24/2022]
|
15
|
Erickson RI, Defensor EB, Fairchild DG, Mirsalis JC, Steinmetz KL. WITHDRAWN. Neurological assessments after treatment with the antimalarial β-arteether in neonatal and adult rats. Neurotoxicology 2011; 32:423-31. [PMID: 21376079 DOI: 10.1016/j.neuro.2011.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
The World Health Organization currently recommends combinatorial treatment including artemisinins as first-line therapy against drug-resistant Plasmodium falciparum malaria. Although highly efficacious, artemisinin and its derivatives, including β-arteether (βAE), are associated with ototoxicity, tremors, and other autonomic and motor impairments in the clinic. Similar neurological symptoms, as well as brainstem lesions, have been observed in adult laboratory species (mice, rats, dogs, and non human primates) following acute treatment with βAE; however, few long-term, nonclinical studies have been conducted. Furthermore, the majority of deaths attributed to malarial infection occur in children under age five, yet no laboratory studies have been initiated in neonatal or juvenile animals. In the current study, neonatal 7-day-old rats were administered intramuscular doses of 1-90mg/kg βAE in sesame oil for up to eight treatment cycles (one cycle=7days treatment+7days without treatment). Neonates were tested for changes in sensorimotor function, and the same animals were tested as adults in the Functional Observational Battery, for motor activity, and in the 8-arm radial maze. Pups receiving a single cycle of 60 or 90mg/kg died within a week of treatment but had few behavioral changes and no brainstem pathology. In the long-term study, behavioral and motor changes and brainstem lesions were observed in a dose- and time-related manner. Rats given repeated cycles of 1 or 5mg/kg βAE showed subtle motor abnormalities (e.g., slight loss of righting reflex) while repeated cycles of 10mg/kg βAE treatment resulted in obvious motor and behavioral changes. Rats receiving 1mg/kg βAE had no brainstem lesions whereas some rats treated with 5mg/kg βAE and all rats treated with 10mg/kg βAE had brainstem lesions. Brainstem lesions were observed after as few as five cycles and were characterized by gliosis, satellitosis and progressive necrosis in motor neurons of the trapezoid, vestibular, and olivary nuclei. This study shows that repeated treatment with clinically relevant doses of βAE causes motor deficits associated with brainstem damage in rodents and suggests that repeated treatment with βAE in children may elicit neurological damage.
Collapse
Affiliation(s)
- R I Erickson
- Biosciences Division, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | | | | | |
Collapse
|
16
|
Severe embryotoxicity of artemisinin derivatives in experimental animals, but possibly safe in pregnant women. Molecules 2009; 15:40-57. [PMID: 20110870 PMCID: PMC6256922 DOI: 10.3390/molecules15010040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 11/16/2022] Open
Abstract
Preclinical studies in rodents have demonstrated that artemisinins, especially injectable artesunate, can induce fetal death and congenital malformations at a low dose range. The embryotoxicity can be induced in those animals only within a narrow window in early embryogenesis. Evidence was presented that the mechanism by which embryotoxicity of artemisinins occurs seems to be limited to fetal erythropoiesis and vasculogenesis/ angiogenesis on the very earliest developing red blood cells, causing severe anemia in the embryos with higher drug peak concentrations. However, this embryotoxicity has not been convincingly observed in clinical trials from 1,837 pregnant women, including 176 patients in the first trimester exposed to an artemisinin agent or artemisinin-based combination therapy (ACT) from 1989 to 2009. In the rodent, the sensitive early red cells are produced synchronously over one day with single or multiple exposures to the drug can result in a high proportion of cell deaths. In contrast, primates required a longer period of treatment of 12 days to induce such embryonic loss. In humans only limited information is available about this stage of red cell development; however, it is known to take place over a longer time period, and it may well be that a limited period of treatment of 2 to 3 days for malaria would not produce serious toxic effects. In addition, current oral intake, the most commonly used route of administration in pregnant women with an ACT, results in lower peak concentration and shorter exposure time of artemisinins that demonstrated that such a concentration–course profile is unlikely to induce the embryotoxicity. When relating the animal and human toxicity of artemisinins, the different drug sensitive period and pharmacokinetic profiles as reviewed in the present report may provide a great margin of safety in the pregnant women.
Collapse
|
17
|
Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob Agents Chemother 2009; 53:4450-6. [PMID: 19635951 DOI: 10.1128/aac.00502-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunocompromised patients are at risk of developing toxoplasmosis, and although chemotherapy is available, standard treatments are often complicated by severe side effects. Artemisinin is a new highly potent antimalarial drug that has activity against Toxoplasma gondii in vitro. However, artemisinin derivatives have previously been ineffective in vivo using a rat model of toxoplasmosis. In the present study, the efficacy of several new artemisinin derivates was investigated for treatment of mice infected with the parasite Toxoplasma gondii. Artemiside and artemisone displayed better inhibition than either artemisinin or artesunate against the parasite in vitro. Artemiside and artemisone treatment controlled parasite replication in vivo, and mice survived the acute infection. In a murine model of reactivated toxoplasmosis, both drugs increased survival, although artemiside was more effective. These results indicate that these newer derivatives of artemisinin may have potential for treatment of toxoplasmosis.
Collapse
|