1
|
Clark RL. Safety of Treating Malaria with Artemisinin-Based Combination Therapy in the First Trimester of Pregnancy. Reprod Toxicol 2022; 111:204-210. [PMID: 35667524 DOI: 10.1016/j.reprotox.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
There have been recent calls for the use of artemisinin-based combination therapies (ACTs) for uncomplicated malaria in the first trimester of pregnancy. Nevertheless, the 2021 WHO Guidelines for Malaria reaffirmed their position that there is not adequate clinical safety data on artemisinins to support that usage. The WHO's position is consistent with several issues with the existing clinical data. First, first trimester safety results from multiple ACTs were lumped in a meta-analysis which does not demonstrate that each of the included ACTs is equally safe. Second, safety results from all periods of the first trimester were lumped in the meta-analysis which does not demonstrate the same level of safety for all subperiods, particularly gestational Weeks 6 to 8 which is likely to be the most sensitive period. Third, even if there is evidence of a lack of an effect on miscarriage for a particular ACT, it does not follow then there are no developmental effects for any ACT. In monkeys, artesunate caused marked embryonal anemia leading to embryo death but the long-term consequences of lower levels of embryonal anemia are not known. Fourth, there have been advances in the sensitivity and usage of rapid diagnostic tests that will lead to diagnoses of malaria earlier in gestation which is less well studied and more likely sensitive to artemisinins. Any clinical studies of the safety of ACTs in the first trimester need to evaluate the results of treatment with individual ACTs during different 1- to 2-week periods of the first trimester.
Collapse
|
2
|
Clark RL. Teratogen update: Malaria in pregnancy and the use of antimalarial drugs in the first trimester. Birth Defects Res 2020; 112:1403-1449. [PMID: 33079495 DOI: 10.1002/bdr2.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Malaria is a particular problem in pregnancy because of enhanced sensitivity, the possibility of placental malaria, and adverse effects on pregnancy outcome. Artemisinin-containing combination therapies (ACTs) are the most effective antimalarials known. WHO recommends 7-day quinine therapy for uncomplicated Plasmodium falciparum malaria in the first trimester despite the superior tolerability and efficacy of 3-day ACT regimens because artemisinins caused embryolethality and/or cardiovascular malformations at relatively low doses in rats, rabbits, and monkeys. The developmental toxicity of artesunate, artemether, and DHA were similar in rats but artesunate was embryotoxic at lower doses in rabbits (5 mg/kg/day) than artemether (no effect level = 25 mg/kg/day). In clinical studies in Africa, treatment with artemether-lumefantrine in the first trimester was observed to be highly efficacious and the miscarriage rate (≤3.1%) was similar to no antimalarial treatment (2.6%). When data from the first-trimester use of largely artesunate-based therapies in Thailand were pooled together, there was no difference in miscarriage rate compared to quinine. However, individually, artesunate-mefloquine was associated with a higher miscarriage rate (15/71 = 21%) compared to other artemisinin-based therapies including 7-day artesunate + clindamycin (2/50 = 4%) and quinine (92/842 = 11%). Thus, appropriate statistical comparisons of individual ACT groups are needed prior to assuming that they all have the same risk for developmental toxicity. Current limitations in the assessment of the safety of ACTs in the first trimester are a lack of exposures early in gestation (gestational weeks 6-7), limited postnatal evaluation for cardiovascular malformations, and the pooling of all ACTs for the assessment of risk.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Saint Augustine, Florida, USA
| |
Collapse
|
3
|
D'Alessandro S, Menegola E, Parapini S, Taramelli D, Basilico N. Safety of Artemisinin Derivatives in the First Trimester of Pregnancy: A Controversial Story. Molecules 2020; 25:molecules25153505. [PMID: 32752056 PMCID: PMC7435965 DOI: 10.3390/molecules25153505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Artemisinin combination therapy (ACT) is recommended by the World Health Organization (WHO) as first line treatment for uncomplicated malaria both in adults and children. During pregnancy, ACT is considered safe only in the second and third trimester, since animal studies have demonstrated that artemisinin derivatives can cause foetal death and congenital malformation within a narrow time window in early embryogenesis. During this period, artemisinin derivatives induce defective embryonic erythropoiesis and vasculogenesis/angiogenesis in experimental models. However, clinical data on the safety profile of ACT in pregnant women have not shown an increased risk of miscarriage, stillbirth, or congenital malformation, nor low birth weight, associated with exposure to artemisinins in the first trimester. Although further studies are needed, the evidence collected up to now is prompting the WHO towards a change in the guidelines for the treatment of uncomplicated malaria, allowing the use of ACT also in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Menegola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
4
|
Yin S, Yang H, Zhao X, Wei S, Tao Y, Liu M, Bo R, Li J. Antimalarial agent artesunate induces G0/G1 cell cycle arrest and apoptosis via increasing intracellular ROS levels in normal liver cells. Hum Exp Toxicol 2020; 39:1681-1689. [PMID: 32633561 DOI: 10.1177/0960327120937331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Artesunate (ARS) has been shown to be highly effective against chloroquine-resistant malaria. In vitro studies reported that ARS has anticancer effects; however, its detrimental action on cancer cells may also play a role in its toxicity toward normal cells and its potential toxicity has not been sufficiently researched. In this study, we investigated the possible cytotoxic effects using normal BRL-3A and AML12 liver cells. The results showed that ARS dose-dependently inhibited cell proliferation and arrested the G0/G1 phase cell cycle in both BRL-3A and AML12 liver cells. Western blotting demonstrated that ARS induced a significant downregulation of cyclin-dependent kinase-2 (CDK2), CDK4, cyclin D1, and cyclin E1 in various levels and then caused apoptosis when the Bcl-2/Bax ratio decreased. Conversely, the levels of intracellular reactive oxygen species (ROS) were increased. The ROS scavenger N-acetylcysteine can significantly inhibit cell cycle arrest and apoptosis induced by ARS. Thus, the data confirmed that ARS exposure impairs normal liver cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis, and this detrimental action may be associated with intracellular ROS accumulation. Collectively, the possible side effects of ARS on healthy normal cells cannot be neglected when developing therapies.
Collapse
Affiliation(s)
- S Yin
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - H Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - X Zhao
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - S Wei
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Y Tao
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - M Liu
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - R Bo
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - J Li
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
5
|
González R, Pons-Duran C, Bardají A, Leke RGF, Clark R, Menendez C. Systematic review of artemisinin embryotoxicity in animals: Implications for malaria control in human pregnancy. Toxicol Appl Pharmacol 2020; 402:115127. [PMID: 32622917 DOI: 10.1016/j.taap.2020.115127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Pregnant women are one of the most susceptible and vulnerable groups to malaria, the most important parasitic disease worldwide. Artemisinin-based combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in all population groups including pregnant women. However, due to the embryotoxicity observed in animal studies, ACTs have long been contraindicated during the first trimester in pregnant women. Despite the safety concerns raised in pre-clinical studies, recent findings on ACTs's use in pregnant women appear to be reassuring regarding safety and have prompted a revision of malaria treatment guidelines for first trimester of pregnancy. To contribute to the risk-benefit assessment of ACTs, we conducted a systematic literature review of animal studies published between 2007 and 2019, which evaluated the embryotoxic effects of artemisinin and its derivatives among pregnant mammals. Eighteen experimental studies fitted the inclusion criteria. These studies confirmed and further characterized the severe embryolethal and embryotoxic dose-dependent effects of artemisinin and its derivatives when administered during the organogenesis period in rats, rabbits and monkeys. Timing of administration and dosage of the drug were found to be key factors in the appearance of embryo damage. Overall, the translation of the findings of artemisinin derivatives use in animal studies to pregnant women remains disturbing. Thus, a policy change in the use of ACTs during the first trimester in pregnant women for the treatment of uncomplicated malaria does not seem pertinent and if implemented, it should be accompanied by solid pharmacovigilance systems, which are challenging to establish in malaria endemic countries.
Collapse
Affiliation(s)
- Raquel González
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Clara Pons-Duran
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Rose G F Leke
- Department of Microbiology, Immunology and Haematology, Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon
| | - Robert Clark
- Artemis Pharmaceutical Research, Jacksonville, Florida, USA
| | - Clara Menendez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Manhiça Health Research Center (CISM), Manhiça, Mozambique
| |
Collapse
|
6
|
Li X, Gu S, Sun D, Dai H, Chen H, Zhang Z. The selectivity of artemisinin-based drugs on human lung normal and cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:86-94. [PMID: 29227908 DOI: 10.1016/j.etap.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 05/21/2023]
Abstract
Artemisinin-based drugs are documented to possess anticancer potential that is selectively effective to cancer cells. However, this selectivity is disputable in different studies and the mechanism is still unclear. To clarify this discrepancy, this study employed five assays to evaluate the cytotoxic effects of artemisinin and artesunate on normal human bronchial epithelial (HBE) cells and lung adenocarcinoma A549 cells. The results of five cytotoxic assays coherently showed that artemisinin and artesunate caused dose-dependent cytotoxicity in both HBE and A549 cells with a slight selectivity to A549 cells. Further, both HBE cells and A549 cells demonstrated elevated levels of intracellular reactive oxygen species (ROS) and increased DNA damage. Since artemisinin and artesunate exerted significant cytotoxic effect on both normal cells and cancer cells via the same pathway of ROS-mediated DNA damage, the side effects of artemisinin and artesunate on normal cell cannot be ignored when developing their antitumor effects.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shiyan Gu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donglei Sun
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huangmei Dai
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongyu Chen
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Clark RL, Edwards TL, Longo M, Kinney J, Walker DK, Rhodes J, Clode SA, Rückle T, Wells T, Andenmatten N, Huber AC. Improved safety margin for embryotoxicity in rats for the new endoperoxide artefenomel (OZ439) as compared to artesunate. Birth Defects Res 2017; 110:553-578. [DOI: 10.1002/bdr2.1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Jon Rhodes
- Covance Laboratories Ltd, Reproduction Toxicology; Harrogate North Yorkshire United Kingdom
| | - Sally A. Clode
- Covance Laboratories Ltd, Reproduction Toxicology; Harrogate North Yorkshire United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Tai X, Cai XB, Zhang Z, Wei R. In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism. Oncol Lett 2016; 12:3701-3706. [PMID: 27900057 PMCID: PMC5104152 DOI: 10.3892/ol.2016.5187] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022] Open
Abstract
The natural extract artemisinin and its derivatives have good anticancer activity. The present study aimed to investigate the in vitro inhibitory effects of combined dihydroartemisinin (DHA) and doxorubicin (DOX) treatment on a variety of tumor cell lines (HeLa, OVCAR-3, MCF-7, PC-3 and A549), as well as the underlying mechanisms. In addition, the in vivo effects of DHA and DOX were evaluated using a mouse HeLa tumor model. The HeLa, OVCAR-3, MCF-7, PC-3 and A549 cells were treated with a combination of DHA and DOX, and the effect on cell viability was detected by Cell Counting kit-8. The cells were observed under a fluorescence microscope after staining with Hoechst 33258 dye to observe morphological changes in the nuclei in order to determine whether the cells in the treatment group exhibited apoptosis. Apoptosis of the cells was further detected by flow cytometry, and statistical analysis was performed. The specific inhibitors of caspase-3, −8 and −9 were used to determine the intrinsic and extrinsic pathways of cell apoptosis. The cervical cancer HeLa cells treated with the combination of DHA and DOX showed up to a 91.5% decrease in viability, which was higher than that of the same cells treated with DHA or DOX alone at the same concentration, respectively (P<0.01). The optimal concentrations of the drugs used in combination were DHA at 10 µg/ml and DOX at 10 µg/ml. DHA + DOX also had a significant inhibitory effect on the ovarian cancer (OVCAR-3), breast cancer (MCF-7), lung cancer (A549) and prostate cancer (PC-3) cells. The images observed under fluorescence microscope after Hoechst 33258 staining showed marked pyknosis in the cells treated with DHA + DOX, similar to that when treated with DHA or DOX alone, which is typical in apoptosis. As determined by flow cytometry, the apoptotic rate of the cells treated with DHA + DOX at optimal concentrations was up to 90%, which was significantly higher than that of the cells treated with DHA or DOX alone at the same concentration. Caspase-9 and −3 inhibitors significantly increased the viability of the cells treated with DHA + DOX. At 6 days post-intratumoral injection of DHA + DOX, the tumor volume was markedly reduced. In vivo toxicity results revealed that the combination of the drugs had basically no effect on the body weight of the mice and had no significant toxicity on the liver, spleen, kidneys and heart of the animals. Overall, the combination of DHA and DOX markedly inhibited the viability of the HeLa, OVCAR-3, MCF-7, PC-3 and A549 cells, and acted on the HeLa cells through the intrinsic apoptotic pathway mediated by caspase-9 and caspase-3. DHA + DOX also had a significant treatment effect in vivo. This study provides a novel idea for the development of a clinical medication against several types of cancer.
Collapse
Affiliation(s)
- Xiang Tai
- Department of Thoracic Surgery, The First Affliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiao-Bei Cai
- Department of Hepatobiliary Surgery, The First Affliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhang Zhang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Rui Wei
- Supply Room, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
9
|
Gomes C, Boareto AC, Dalsenter PR. Clinical and non-clinical safety of artemisinin derivatives in pregnancy. Reprod Toxicol 2016; 65:194-203. [PMID: 27506918 DOI: 10.1016/j.reprotox.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Malaria in pregnancy is a clinically wasting infectious disease, where drug therapy has to be promptly initiated. Currently, the treatment of this infection depends on the use of artemisinin derivatives. The World Health Organization does not recommend the use of these drugs in the first trimester of pregnancy due to non-clinical findings that have shown embryolethality and teratogenic effects. Nevertheless, until now, this toxicity has not been proved in humans. Artemisinin derivatives mechanisms of embryotoxicity are related to depletion of circulating embryonic primitive erythroblasts. Species differences in this sensitive period for toxicity and the presence of malaria infection, which could reduce drug distribution to the fetus, are significant to the risk assessment of artemisinin derivatives treatment to pregnant women. In this review we aimed to assess the results of non-clinical and clinical studies with artemisinin derivatives, their mechanisms of embryotoxicity and discuss the safety of their use during pregnancy.
Collapse
Affiliation(s)
- Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | | |
Collapse
|
10
|
Kawamura S, Yoshioka T, Mito N, Kishimoto N, Nakaoka M, Fantel AG. Mechanism of Developmental Effects in Rats Caused by an N-Phenylimide Herbicide: Transient Fetal Anemia and Sequelae during Mid-to-Late Gestation. ACTA ACUST UNITED AC 2016; 107:45-59. [PMID: 26865470 DOI: 10.1002/bdrb.21172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rat developmental toxicity including embryolethality and teratogenicity (mainly ventricular septal defects [VSDs] and wavy ribs) was produced by an N-phenylimide herbicide that inhibits protoporphyrinogen oxidase (PPO) common to chlorophyll and heme biosynthesis. Major characteristics of the developmental toxicity included species difference between rats and rabbits, compound-specific difference among structurally similar herbicides, and sensitive period. Protoporphyrin accumulation in treated fetuses closely correlated with the major characteristics. Iron deposits in erythroblastic mitochondria and degeneration of erythroblasts were observed in treated rat fetuses. In this study we investigated fetal anemia and subsequent developmental effects in rats, and inhibition of PPO in rats, rabbits, and humans by the herbicides in vitro. METHODS Fetuses were treated on gestational day (GD) 12 and removed on GDs 13 through 20. All litters were examined externally. One half of litters were examined for blood and skeletal development, and the other half for interventricular foramen closure. Effects on PPO were determined in mitochondria from embryos and adult livers. RESULTS Fetal anemia in rats was evident on GDs 13 through 16. Subsequently, enlarged heart, delayed closure of the foramen, reduced serum protein, and retarded rib ossification were observed. In vitro PPO inhibition exhibited species- and compound-specific differences corresponding to the developmental toxicity. CONCLUSION We propose that developmental toxicity results from PPO inhibition in primitive erythroblasts, causing transient fetal anemia followed by death. Compensatory enlargement of the fetal heart results in failure of interventricular foramen closure and VSD. Reduced serum protein leads to delayed ossification and wavy ribs.
Collapse
Affiliation(s)
- Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Takafumi Yoshioka
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Nobuaki Mito
- Intellectual Property Department, Sumitomo Chemical Co. Ltd, Chuo-ku, Tokyo, Japan
| | - Noriyuki Kishimoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Masanao Nakaoka
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Alan G Fantel
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Clark RL. Hypothesized cause of delayed hemolysis associated with intravenous artesunate. Med Hypotheses 2013; 82:167-70. [PMID: 24370269 DOI: 10.1016/j.mehy.2013.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
In recent publications, investigators described cases in which there was a delayed hemolysis following intravenous (IV) artesunate treatment. The delayed hemolysis event occurred at the nadir of blood hemoglobin concentration, i.e., at the time when blood hemoglobin concentration was switching from a progressive decline to a progressive increase. It is hypothesized that this nadir indicates the time when red cell production is resuming after having been arrested, the delayed hemolysis event is due to lysis of the first (aberrant) reticulocytes released once production is resumed and, therefore, that the hemolysis signals the resumption of red cell production. Since this delayed hemolysis has not been associated with a significant decrease in blood hemoglobin, the hemolytic event is not of particular concern even if it could be attributed to artesunate. More important than this hemolysis event was the preceding progressive anemia that lasted for up to 19 days. Both a decrease in reticulocyte production and a shortened life span of previously infected red cells likely contributed to the anemia. The question that remains to be answered is whether the progressive anemia that lasted 2-3 weeks in these patients was attributable solely to their severe malaria or was possibly enhanced and prolonged by the high plasma concentrations of artesunate associated with IV administration. Controlled clinical studies addressing this question may be needed.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, 1758 Allentown Road #205, Lansdale, PA 19446, USA.
| |
Collapse
|