1
|
David Wise L. Enhancing reliability of embryo-fetal developmental toxicity studies: A proposed design of replicate studies. Regul Toxicol Pharmacol 2025; 155:105742. [PMID: 39577485 DOI: 10.1016/j.yrtph.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND This report addresses the reliability of results from rat Embryo-Fetal Developmental Toxicity (EFDT) studies. Recent literature discusses the roles of reproducibility, replicability, and other influences on scientific reliability. Reproducibility is a re-analysis of the original data, while replicability addresses the same question with a separate study of some type. Concordance of rat and rabbit studies has been addressed previously, but replication of single-species EFDT studies was not found in the literature. A modest modification of the rat study is therefore proposed to assess replicability and possibly enhance reliability. METHODS Regulatory guidelines were consulted and relevant literature was identified through online searches. RESULTS Each replicate EFDT (r-EFDT) study in rats would consist of half the mated females of the definitive study. Studies would start at the same or different times in one testing facility. Separate shipments of animals (non-littermates) are required. All other procedures would be protocol-driven. The micro- and macro-environments of the animals would be held as constant as possible. Justification, design options, and interpretation methods are discussed. CONCLUSION Besides adding reliability, other benefits include reduced animal usage, and potentially reduced cost and time to final reports. By reducing the need for repeated studies due to questionable results, this modified study is viewed as a more efficient use of costly resources. The r-EFDT study design could easily be adapted to assess replicability of rabbit EFDT and some general toxicity studies. Future replicate studies are needed to critically evaluate replicability and the overall impact on study reliability.
Collapse
Affiliation(s)
- L David Wise
- Independent Teratologist, Philadelphia, PA, USA.
| |
Collapse
|
2
|
The DevTox Germ Layer Reporter Platform: An Assay Adaptation of the Human Pluripotent Stem Cell Test. TOXICS 2022; 10:toxics10070392. [PMID: 35878297 PMCID: PMC9321663 DOI: 10.3390/toxics10070392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development.
Collapse
|
3
|
Akhtar MF, Younas S, Saleem A, Baig MMFA, Sharif A, Abdel-Daim MM, Rasul A, Saleem M. Maternotoxicity and fetotoxicity in Rattus norvegicus albinus exposed to tramadol during the late phase of pregnancy. Birth Defects Res 2021; 113:1407-1421. [PMID: 34553514 DOI: 10.1002/bdr2.1957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 09/04/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Tramadol, an atypical opioid, is clinically efficacious in treating moderate to severe pain. The aim of current study was to find out the toxicological effects of tramadol exposure to pregnant rats and fetuses during the late phase of pregnancy. METHODS Wistar pregnant rats were exposed to 1.25, 2.5, or 5 mg/kg/day tramadol from 14th to 20th day of pregnancy. The same therapy was given to nonpregnant rats for 7 days. The body weight, oral glucose and lipid tolerance tests, and effect on complete blood parameters in both pregnant and nonpregnant rats were determined. On 20th day, maternal placentas were excised and weighed while fetuses were observed for any deformity and growth retardation. Oxidative stress biomarkers were estimated in the liver and kidney tissue homogenates of the pregnant and nonpregnant rats while the whole fetus homogenate was processed for the same. Moreover, histopathology of the liver and kidney of pregnant and nonpregnant rats were carried out. RESULTS Tramadol administration did not significantly alter the area under curve of the blood glucose and triglyceride levels in both the pregnant and nonpregnant rats. It reduced the live fetuses, placental weights, fetal length, and fetal weights. Tramadol treated pregnant rats showed significantly (p < .05) reduced red blood cells, hematocrit, hemoglobin, and platelets with reference to control group. Similarly, structural abnormalities and malfunctioning of the liver and kidney of pregnant rats were instituted; however, it did not affect the structural integrity of nonpregnant rats. A substantial (p < .001-.0001) altered glutathione and malondialdehyde levels in the fetuses, pregnant, and nonpregnant animals (tissue homogenates) at all dosage levels were indicative of tramadol induced oxidative stress. Furthermore, tramadol exposure resulted in more significant (p < .01-.001) alteration of lipid profile in the pregnant than the nonpregnant animals. CONCLUSION Acquired results suggested the maternotoxic and fetotoxic effects of tramadol exposure during the late gestation period.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Sobia Younas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mirza Muhammad Faran Ashraf Baig
- Research and Biomedical Engineering for Novel Biofunctional, and Pharmaceutical Nanomaterials, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong, China
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohammad Saleem
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Scialli AR. Teratogen? Birth Defects Res 2020; 112:1103-1104. [DOI: 10.1002/bdr2.1746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 11/10/2022]
|
5
|
Warkus ELL, Marikawa Y. Exposure-Based Validation of an In Vitro Gastrulation Model for Developmental Toxicity Assays. Toxicol Sci 2018; 157:235-245. [PMID: 28184906 DOI: 10.1093/toxsci/kfx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Establishment of effective non-animal alternatives for developmental toxicity screening assays is desirable to ensure maternal and fetal health outcomes. Validation of such assays requires a comparison between the in vitro responses to chemical exposures and the in vivo impacts of the corresponding compounds at equivalent concentrations. Here, we investigated how the P19C5 gastrulation model responds to 24 compounds at specific concentrations, some of which are categorized as positive exposures based on previously observed detrimental effects on development in vivo, whereas others are categorized as negative exposures due to lack of effects in vivo. The P19C5 gastrulation model consists of in vitro morphogenesis of mouse stem cells aggregated into embryoid bodies (EBs), which recapitulates growth and axial elongation of early embryos during four days of three-dimensional culture. Adverse impacts of chemical exposures were defined as: death, impaired growth, and altered axial elongation of EBs. Ten out of 17 positive exposures caused adverse impacts on EBs. In contrast, only three out of 17 negative exposures adversely affected EBs, although two of the three diminished viability of somatic cell lines (NIH/3T3, HEK293, and JEG3), suggesting general cytotoxicity. Overall, the study showed that 24 out of 34 exposures impacted EB development in a manner concordant with the in vivo developmental effects. Validation of other alternative assays using the same set of chemical exposures will provide information on the strengths and weaknesses of each assay, and should help determine the most effective ensemble of assays to detect a wide range of developmentally toxic exposures.
Collapse
Affiliation(s)
- Erica L L Warkus
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
6
|
Green ML, Lebron JA, Tanis KQ, Redfern BG, Zhu L, Yu Y, Wang E, Kaczor AR, Wysoczanski E, Chen F, Raymond CS, Mattson B, Sistare FD, DeGeorge JJ. Use of Alternative Developmental Toxicity Assays to Assess Teratogenicity Potential of Pharmaceuticals. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maia L. Green
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Jose A. Lebron
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Keith Q. Tanis
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Brian G. Redfern
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Lei Zhu
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Yan Yu
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Erjia Wang
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Allen R. Kaczor
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Elizabeth Wysoczanski
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - FeiFei Chen
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Christopher S. Raymond
- Mouse Transgenic and Gene Targeting Core, Emory University School of Medicine, Atlanta, Georgia
| | - Britta Mattson
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Frank D. Sistare
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Joseph J. DeGeorge
- Safety Assessment and Laboratory Animal Research, Merck Research Laboratories, West Point, Pennsylvania
| |
Collapse
|
7
|
Dauti A, Gerstl B, Chong S, Chisholm O, Anazodo A. Improvements in Clinical Trials Information Will Improve the Reproductive Health and Fertility of Cancer Patients. J Adolesc Young Adult Oncol 2017; 6:235-269. [PMID: 28207285 DOI: 10.1089/jayao.2016.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are a number of barriers that result in cancer patients not being referred for oncofertility care, which include knowledge about reproductive risks of antineoplastic agents. Without this information, clinicians do not always make recommendations for oncofertility care. The objective of this study was to describe the level of reproductive information and recommendations that clinicians have available in clinical trial protocols regarding oncofertility management and follow-up, and the information that patients may receive in clinical trials patient information sheets or consent forms. A literature review of the 71 antineoplastic drugs included in the 68 clinical trial protocols showed that 68% of the antineoplastic drugs had gonadotoxic animal data, 32% had gonadotoxic human data, 83% had teratogenic animal data, and 32% had teratogenic human data. When the clinical trial protocols were reviewed, only 22% of the protocols reported the teratogenic risks and 32% of the protocols reported the gonadotoxic risk. Only 56% of phase 3 protocols had gonadotoxic information and 13% of phase 3 protocols had teratogenic information. Nine percent of the protocols provided fertility preservation recommendations and 4% provided reproductive information in the follow-up and survivorship period. Twenty-six percent had a section in the clinical trials protocol, which identified oncofertility information easily. When gonadotoxic and teratogenic effects of treatment were known, they were not consistently included in the clinical trial protocols and the lack of data for new drugs was not reported. Very few protocols gave recommendations for oncofertility management and follow-up following the completion of cancer treatment. The research team proposes a number of recommendations that should be required for clinicians and pharmaceutical companies developing new trials.
Collapse
Affiliation(s)
- Angela Dauti
- 1 College of Arts and Sciences, Department of Chemistry, New York University , New York City, New York.,2 Population Sciences Department, Dana-Farber Cancer Institute , Boston, Massachusetts.,3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Brigitte Gerstl
- 4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia
| | - Serena Chong
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Orin Chisholm
- 5 Department of Pharmaceutical Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Antoinette Anazodo
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia .,4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia .,6 Nelune Comprehensive Cancer Centre, Prince of Wales Hospital , Randwick, Australia
| |
Collapse
|