1
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Chen S, Lei Y, Yang Y, Liu C, Kuang L, Jin L, Finnell RH, Yang X, Wang H. A mutation in TBXT causes congenital vertebral malformations in humans and mice. J Genet Genomics 2024; 51:433-442. [PMID: 37751845 DOI: 10.1016/j.jgg.2023.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
T-box transcription factor T (TBXT; T) is required for mesodermal formation and axial skeletal development. Although it has been extensively studied in various model organisms, human congenital vertebral malformations (CVMs) involving T are not well established. Here, we report a family with 15 CVM patients distributed across 4 generations. All affected individuals carry a heterozygous mutation, T c.596A>G (p.Q199R), which is not found in unaffected family members, indicating co-segregation of the genotype and phenotype. In vitro assays show that T p.Q199R increases the nucleocytoplasmic ratio and enhances its DNA-binding affinity, but reduces its transcriptional activity compared to the wild-type. To determine the pathogenicity of this mutation in vivo, we generated a Q199R knock-in mouse model that recapitulates the human CVM phenotype. Most heterozygous Q199R mice show subtle kinked or shortened tails, while homozygous mice exhibit tail filaments and severe vertebral deformities. Overall, we show that the Q199R mutation in T causes CVM in humans and mice, providing previously unreported evidence supporting the function of T in the genetic etiology of human CVM.
Collapse
Affiliation(s)
- Shuxia Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yajun Yang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chennan Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lele Kuang
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueyan Yang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
3
|
Serra KM, Vyzas C, Shehreen S, Chipendo I, Clifford KM, Youngstrom DW, Devoto SH. Vertebral pattern and morphology is determined during embryonic segmentation. Dev Dyn 2024; 253:204-214. [PMID: 37688793 DOI: 10.1002/dvdy.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND The segmented nature of the adult vertebral column is based on segmentation of the paraxial mesoderm during early embryogenesis. Disruptions to embryonic segmentation, whether caused by genetic lesions or environmental stress, result in adult vertebral pathologies. However, the mechanisms linking embryonic segmentation and the details of adult vertebral morphology are poorly understood. RESULTS We induced border defects using two approaches in zebrafish: heat stress and misregulation of embryonic segmentation genes tbx6, mesp-ba, and ripply1. We assayed vertebral length, regularity, and polarity using microscopic and radiological imaging. In population studies, we find a correlation between specific embryonic border defects and specific vertebral defects, and within individual fish, we trace specific adult vertebral defects to specific embryonic border defects. CONCLUSIONS Our data reveal that transient disruptions of embryonic segment border formation led to significant vertebral anomalies that persist through adulthood. The spacing of embryonic borders controls the length of the vertebra. The positions of embryonic borders control the positions of ribs and arches. Embryonic borders underlie fusions and divisions between adjacent spines and ribs. These data suggest that segment borders have a dominant role in vertebral development.
Collapse
Affiliation(s)
- Kevin M Serra
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Christina Vyzas
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Sarah Shehreen
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Iris Chipendo
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Katherine M Clifford
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
4
|
Keseroglu K, Zinani OQH, Keskin S, Seawall H, Alpay EE, Özbudak EM. Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes. Nat Commun 2023; 14:6497. [PMID: 37838784 PMCID: PMC10576776 DOI: 10.1038/s41467-023-42220-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Mutations of several genes cause incomplete penetrance and variable expressivity of phenotypes, which are usually attributed to modifier genes or gene-environment interactions. Here, we show stochastic gene expression underlies the variability of somite segmentation defects in embryos mutant for segmentation clock genes her1 or her7. Phenotypic strength is further augmented by low temperature and hypoxia. By performing live imaging of the segmentation clock reporters, we further show that groups of cells with higher oscillation amplitudes successfully form somites while those with lower amplitudes fail to do so. In unfavorable environments, the number of cycles with high amplitude oscillations and the number of successful segmentations proportionally decrease. These results suggest that individual oscillation cycles stochastically fail to pass a threshold amplitude, resulting in segmentation defects in mutants. Our quantitative methodology is adaptable to investigate variable phenotypes of mutant genes in different tissues.
Collapse
Affiliation(s)
- Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Oriana Q H Zinani
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Sevdenur Keskin
- Allergy and Immunology, University of Arkansas for Medical Science and Arkansas Children's Hospital, Little Rock, AR, 72202, USA
| | - Hannah Seawall
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Eslim E Alpay
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Singh J, Kaur M, Rasane P, Kaur S, Kaur J, Sharma K, Gulati A. Nutritional management and interventions in complications of pregnancy: A systematic review. Nutr Health 2023:2601060231172545. [PMID: 37128673 DOI: 10.1177/02601060231172545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Background: Pregnancy, also known as the "gestation period" which lasts for 37-40 weeks, has been marked as the period of "physiological stress" in a woman's life. A wide range of symptoms, from nausea to ectopic pregnancy, are usually aligned with risk factors like abortion, miscarriage, stillbirth, etc. An estimated total of 15% of total pregnant women face serious complications requiring urgent attention for safe pregnancy survival. Over the past decades, several changes in the environment and nutrition habits have increased the possibility of unfavourable changes during the gestation phase. The diagnostic factors, management and nutritional interventions are targeted and more emphasis has been laid on modifying or managing the nutritional factors in this physiologically stressed phase. Aims: This review focuses on dietary modifications and nutritional interventions for the treatment of complications of pregnancy. Nutritional management has been identified to be one of the primary necessities in addition to drug therapy. It is important to set a healthy diet pattern throughout the gestation phase or even before by incorporating key nutrients into the maternal diet. Methods: The published literature from various databases including PubMed, Google Scholar and ScienceDirect were used to establish the fact of management and treatment of complications of pregnancy. Results: The recommendations of dietary supplements have underlined the concept behind the eradication of maternal deficiencies and improving metabolic profiles. Conclusion: Therefore, the present review summarises the dietary recommendations to combat pregnancy-related complications which are necessary in order to prevent and manage the same.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Mansehaj Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kartik Sharma
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Amisha Gulati
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Wongkitikamjorn W, Hosomichi J, Wada E, Maeda H, Satrawaha S, Hong H, Hayashi YK, Yoshida KI, Ono T. Gestational Intermittent Hypoxia Induces Mitochondrial Impairment in the Geniohyoid Muscle of Offspring Rats. Cureus 2022; 14:e25088. [PMID: 35600069 PMCID: PMC9117862 DOI: 10.7759/cureus.25088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Gestational intermittent hypoxia (IH), a hallmark of obstructive sleep apnea during gestation, alters respiratory neural control and diaphragm muscle contractile function in the offspring. The geniohyoid (GH) muscle is innervated by the respiratory-related hypoglossal nerve and plays a role in tongue traction and suckling, motor behaviors that then give way to chewing. Here, we aimed to investigate the effects of gestational exposure to IH on the muscle development and metabolism of GH and masseter muscles in male offspring rats. Materials and methods Pregnant Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O2) for eight hours/day during gestational days 7-20. The GH and masseter muscles from 35-day-old male offspring (n = 6 in each group) were analyzed. Results Gestational IH induction reduced type IIA fiber size in the GH muscle of the offspring but not in the masseter muscle. Western blot analysis showed that gestational IH-induced significant downregulation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1-alpha (PGC1α) protein in the GH muscle but not in the masseter muscle. Moreover, optic atrophy 1 and mitofusin-2 proteins were decreased and mitochondrial fission 1 protein levels were increased in the GH muscle of the offspring exposed to gestational IH. Mitochondrial adenosine triphosphate (ATP) synthase subunit alpha and transcriptional factor A (TFAM) were decreased in the GH muscle post-gestational IH. Conclusion These findings suggest that gestational IH-induced impaired mitochondrial metabolism and alteration of oxidative myofibers of the GH muscle in the pre-adolescent offspring, but not the masseter muscle, owing to the susceptibility of GH muscular mitochondria to gestational IH.
Collapse
Affiliation(s)
- Wirongrong Wongkitikamjorn
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, JPN
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, THA
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, JPN
| | - Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, Tokyo, JPN
| | - Hideyuki Maeda
- Department of Forensic Medicine, Tokyo Medical University, Tokyo, JPN
| | - Sirichom Satrawaha
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, THA
| | - Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, JPN
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, CHN
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, JPN
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Tokyo Medical University, Tokyo, JPN
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, JPN
| |
Collapse
|
7
|
Zhang X, Wang D, Mak KLK, Tuan RS, Ker DFE. Engineering Musculoskeletal Grafts for Multi-Tissue Unit Repair: Lessons From Developmental Biology and Wound Healing. Front Physiol 2021; 12:691954. [PMID: 34504435 PMCID: PMC8421786 DOI: 10.3389/fphys.2021.691954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act coordinately as a single multi-tissue unit to facilitate body movement. The development, integration, and maturation of these essential components and their response to injury are vital for conferring efficient locomotion. The highly integrated nature of these components is evident under disease conditions, where rotator cuff tears at the bone-tendon interface have been reported to be associated with distal pathological alterations such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal injuries and diseases, it is important to gain deep understanding of the development, integration and maturation of these musculoskeletal tissues along with their interfaces as well as the impact of inflammation on musculoskeletal healing and graft integration. This review highlights the current knowledge of developmental biology and wound healing in the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from these biological and pathological processes within the context of musculoskeletal tissue engineering and regenerative medicine. Integrating these knowledge and perspectives can serve as guiding principles to inform the development and engineering of musculoskeletal grafts and other tissue engineering strategies to address challenging musculoskeletal injuries and diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - King-Lun Kingston Mak
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
8
|
Abstract
STUDY DESIGN Case-control study. OBJECTIVE The aim of this study was to estimate the relationship between circulating cell-free DNA (ccf DNA) and clinical parameters of patients with congenital scoliosis (CS). SUMMARY OF BACKGROUND DATA CS is a complex spinal deformity characteristic of congenital vertebral malformations. Although numerous studies have centered on the etiology of CS, the cause of CS remains unclear. Previously, we reported that circulating cell-free DNA (ccf DNA) is altered in adolescent idiopathic scoliosis (AIS). However, the relationship between ccf DNA and the clinical parameters of patients with CS remains unclear. METHODS The plasma of peripheral blood from 35 patients with CS and 32 age-matched controls was collected for ccf DNA analysis. Quantitative PCR was used to detect ccf n-DNA and ccf mt-DNA levels, and correlation analyses between ccf n-DNA and ccf mt-DNA levels were conducted. Receiver-operating characteristic (ROC) curves were used to analyze the sensitivity and specificity of ccf n-DNA and ccf mt-DNA levels to different characteristics. RESULTS The plasma ccf mt-DNA levels of both ND1 and CYTC were significantly decreased in patients with CS compared with levels in controls both in total and by sex, whereas the plasma ccf n-DNA levels showed no significant difference. There is no difference in both ccf mt-DNA and ccf n-DNA between S-SDV and M-SDV according to The International Consortium for Vertebral Anomalies and Scoliosis (ICVAS) classification. The ROC curve analyses showed a reliable sensitivity and specificity of CS predicted by ccf mt-DNA levels in total but failed to distinguish different ICVAS types. CONCLUSION Significantly decreased plasma ccf mt-DNA levels were observed in patients with CS compared with those in controls. Although this finding has limited significance for clinical practice, it indicates that ccf mt-DNA may predict the onset or development of CS. Further studies should focus on the role of ccf mt-DNA in embryo development and whether ccf mt-DNAs could be considered as a marker for prenatal screening in development disorder like CS.Level of Evidence: 4.
Collapse
|
9
|
Beaumont CA, Dunaway DJ, Padwa BL, Forrest C, Koudstaal MJ, Caron CJJM. Extracraniofacial anomalies in Treacher Collins syndrome: A multicentre study of 248 patients. Int J Oral Maxillofac Surg 2021; 50:1471-1476. [PMID: 33752939 DOI: 10.1016/j.ijom.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Treacher Collins syndrome (TCS) is a congenital malformation of the craniofacial structures derived from the first and second pharyngeal arches. The craniofacial deformities are well described in the literature. However, little is known about whether there are associated extracraniofacial anomalies. A retrospective study was conducted using data from four craniofacial units. Medical charts were reviewed for the presence and type of extracraniofacial anomalies, as well as age at diagnosis. A possible correlation between the severity of the phenotype and the presence of extracraniofacial anomalies was assessed using the Hayashi classification. A total of 248 patients with TCS were identified; 240 were confirmed to have TCS, of whom 61 (25.4%) were diagnosed with one or more extracraniofacial anomalies. Ninety-five different extracraniofacial anomalies were found; vertebral (n=32) and cardiac (n=13) anomalies were most frequently seen, followed by reproductive system (n=11), central nervous system (n=7), and limb (n=7) anomalies. No correlations between tracts were found. Extracraniofacial anomalies were more prevalent in these patients with TCS compared to the general population (25.4% vs 0.001-2%, respectively). Furthermore, a positive trend was seen between the severity of the syndrome and the presence of extracraniofacial anomalies. A full clinical examination should be performed on any new TCS patient to detect any extracraniofacial anomalies on first encounter with the craniofacial team.
Collapse
Affiliation(s)
- C A Beaumont
- The Dutch Craniofacial Center, Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - D J Dunaway
- The Craniofacial Unit, Great Ormond Street Hospital, London, UK
| | - B L Padwa
- The Craniofacial Centre, Boston Children's Hospital, Boston, MA, USA
| | - C Forrest
- The Center for Craniofacial Care and Research, SickKids Hospital, Toronto, Canada
| | - M J Koudstaal
- The Dutch Craniofacial Center, Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Sophia's Children's Hospital, Rotterdam, the Netherlands; The Craniofacial Unit, Great Ormond Street Hospital, London, UK; The Craniofacial Centre, Boston Children's Hospital, Boston, MA, USA
| | - C J J M Caron
- The Dutch Craniofacial Center, Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Sophia's Children's Hospital, Rotterdam, the Netherlands; The Craniofacial Unit, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
10
|
Yang N, Wu N, Zhang L, Zhao Y, Liu J, Liang X, Ren X, Li W, Chen W, Dong S, Zhao S, Lin J, Xiang H, Xue H, Chen L, Sun H, Zhang J, Shi J, Zhang S, Lu D, Wu X, Jin L, Ding J, Qiu G, Wu Z, Lupski JR, Zhang F. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet 2019; 28:539-547. [PMID: 30307510 DOI: 10.1093/hmg/ddy358] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital vertebral malformations (CVMs) are associated with human TBX6 compound inheritance that combines a rare null allele and a common hypomorphic allele at the TBX6 locus. Our previous in vitro evidence suggested that this compound inheritance resulted in a TBX6 gene dosage of less than haploinsufficiency (i.e. <50%) as a potential mechanism of TBX6-associated CVMs. To further investigate this pathogenetic model, we ascertained and collected 108 Chinese CVM cases and found that 10 (9.3%) of them carried TBX6 null mutations in combination with common hypomorphic variants at the second TBX6 allele. For in vivo functional verification and genetic analysis of TBX6 compound inheritance, we generated both null and hypomorphic mutations in mouse Tbx6 using the CRISPR-Cas9 method. These Tbx6 mutants are not identical to the patient variants at the DNA sequence level, but instead functionally mimic disease-associated TBX6 variants. Intriguingly, as anticipated by the compound inheritance model, a high penetrance of CVM phenotype was only observed in the mice with combined null and hypomorphic alleles of Tbx6. These findings are consistent with our experimental observations in humans and supported the dosage effect of TBX6 in CVM etiology. In conclusion, our findings in the newly collected human CVM subjects and Tbx6 mouse models consistently support the contention that TBX6 compound inheritance causes CVMs, potentially via a gene dosage-dependent mechanism. Furthermore, mouse Tbx6 mutants mimicking human CVM-associated variants will be useful models for further mechanistic investigations of CVM pathogenesis in the cases associated with TBX6.
Collapse
Affiliation(s)
- Nan Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Xiaojun Ren
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Hang Xiang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Sun
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangang Shi
- Second Department of Spine Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Daru Lu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaohui Wu
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
11
|
Chen C, Tan H, Bi J, Li L, Rong T, Lin Y, Sun P, Liang J, Jiao Y, Li Z, Sun L, Shen J. LncRNA-SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno-miR-466c-5p through PI3K-ATK signalling. J Cell Mol Med 2019; 23:4582-4591. [PMID: 31044535 PMCID: PMC6584475 DOI: 10.1111/jcmm.14355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.
Collapse
Affiliation(s)
- Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lin Li
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Tianhua Rong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Orthopedics Surgery, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Jiao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Sun
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Renkema R, Caron C, Wolvius E, Rooijers W, Schipper J, Dunaway D, Forrest C, Koudstaal M, Padwa B. Vertebral anomalies in craniofacial microsomia: a retrospective analysis of 991 patients. Int J Oral Maxillofac Surg 2018; 47:1365-1372. [DOI: 10.1016/j.ijom.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/11/2018] [Accepted: 05/16/2018] [Indexed: 11/24/2022]
|
13
|
Mackel CE, Jada A, Samdani AF, Stephen JH, Bennett JT, Baaj AA, Hwang SW. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst 2018; 34:2155-2171. [PMID: 30078055 DOI: 10.1007/s00381-018-3915-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To provide the reader with a comprehensive but concise understanding of congenital scoliosis METHODS: We have undertaken to summarize available literature on the pathophysiology, epidemiology, and management of congenital scoliosis. RESULTS Congenital scoliosis represents 10% of pediatric spine deformity and is a developmental error in segmentation, formation, or a combination of both leading to curvature of the spine. Treatment options are complicated by balancing growth potential with curve severity. Often associated abnormalities of cardiac, genitourinary, or intraspinal systems are concurrent and should be evaluated as part of the diagnostic work-up. Management balances the risk of progression, growth potential, lung development/function, and associated risks. Surgical treatment options involve growth-permitting systems or fusions. CONCLUSION Congenital scoliosis is a complex spinal problem associated with many other anomalous findings. Treatment options are diverse but enable optimization of management and care of these children.
Collapse
Affiliation(s)
- Charles E Mackel
- Department of Neurosurgery, Tufts Medical Center and Floating Hospital for Children, 800 Washington St, Boston, 02111, MA, USA
| | - Ajit Jada
- Department of Neurological Surgery, Weill Cornell Medical College, Box 99, 525 E 68th St, New York, 10065, NY, USA
| | - Amer F Samdani
- Shriners Hospitals for Children-Philadelphia, 3551 N Broad Street, Philadelphia, PA, 19140, USA
| | - James H Stephen
- Department of Neurosurgery, University of Pennsylvania, 3400 Spruce St, Philadelphia, 19104, PA, USA
| | - James T Bennett
- Department of Orthopaedic Surgery, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, 19140, PA, USA
| | - Ali A Baaj
- Department of Neurological Surgery, Weill Cornell Medical College, Box 99, 525 E 68th St, New York, 10065, NY, USA
| | - Steven W Hwang
- Shriners Hospitals for Children-Philadelphia, 3551 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
14
|
Taee N, Tarhani F, Goodarzi MF, Safdari M, Bajelan A. Mermaid Syndrome: A Case Report of a Rare Congenital Anomaly in Full-Term Neonate with Thumb Deformity. AJP Rep 2018; 8:e328-e331. [PMID: 30443435 PMCID: PMC6235678 DOI: 10.1055/s-0038-1669943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/16/2018] [Indexed: 01/30/2023] Open
Abstract
The mermaid syndrome (sirenomelia) is an extremely rare anomaly, an incidence of 1 in 100,000 births, in which a newborn born with legs joined together featuring a mermaid-like appearance (head and trunk like humans and tail like fish), and in most cases die shortly after birth. Gastrointestinal and urogenital anomalies and single umbilical artery are clinical outcome of this syndrome. There are two important hypotheses for pathogenesis of mermaid syndrome: vitelline artery steal hypothesis and defective blastogenesis hypothesis. The cause of the mermaid syndrome is unknown, but there are some possible factors such as age younger than 20 years and older than 40 years in mother and exposure of fetus to teratogenics. Here, we introduced 19-year-old mother's first neonate with mermaid syndrome. The mother had gestational diabetes mellitus and neonate was born with single lower limb, ambiguous genitalia, and thumb anomalies, and 4 days after birth, the neonate died due to multiple anomalies and imperforated anus.
Collapse
Affiliation(s)
- Nadereh Taee
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fariba Tarhani
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojgan Faraji Goodarzi
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Safdari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Bajelan
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
15
|
Small molecule screen in embryonic zebrafish using modular variations to target segmentation. Nat Commun 2017; 8:1901. [PMID: 29196645 PMCID: PMC5711842 DOI: 10.1038/s41467-017-01469-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/19/2017] [Indexed: 01/19/2023] Open
Abstract
Small molecule in vivo phenotypic screening is used to identify drugs or biological activities by directly assessing effects in intact organisms. However, current screening designs may not exploit the full potential of chemical libraries due to false negatives. Here, we demonstrate a modular small molecule screen in embryonic zebrafish that varies concentration, genotype and timing to target segmentation disorders, birth defects that affect the spinal column. By testing each small molecule in multiple interrelated ways, this screen recovers compounds that a standard screening design would have missed, increasing the hit frequency from the chemical library three-fold. We identify molecular pathways and segmentation phenotypes, which we share in an open-access annotated database. These hits provide insight into human vertebral segmentation disorders and myopathies. This modular screening strategy is applicable to other developmental questions and disease models, highlighting the power of relatively small chemical libraries to accelerate gene discovery and disease study.
Collapse
|
16
|
Zim S, Lee J, Rubinstein B, Senders C. Prevalence of Renal and Cervical Vertebral Anomalies in Patients with Isolated Microtia and/or Aural Atresia. Cleft Palate Craniofac J 2017; 54:664-667. [DOI: 10.1597/16-115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective The objective of this study was to determine whether patients with isolated microtia or aural atresia have an increased prevalence of renal or cervical vertebral anomalies. Design The study design was a retrospective medical record review. Setting The setting was the following four distinct institutions: an urban tertiary care children's hospital, two urban academic medical centers, and a staff-model health maintenance organization. Participants Patients diagnosed with microtia, aural atresia, or oculoauriculovertebral spectrum were identified. Patients with facial asymmetry, craniofacial microsomia, and other craniofacial abnormalities or syndromes were excluded. Main Outcome Measures Main outcome measures were the number of patients with isolated microtia or aural atresia who underwent a renal ultrasound or cervical spine X-ray, the results of those studies, and further evaluation or treatment for any abnormalities found. Statistical Analysis A binomial analysis using a one-sided 95% confidence level was performed. Results A total of 514 patients with isolated microtia and/or aural atresia were identified. Of these patients, 145 (28%) had undergone a renal ultrasound and 81 (16%) had undergone cervical spine X-rays. A total of 3 patients (2%) had minimal renal pelviectasis, all of which had resolved on repeat ultrasound and required no treatment. There were no structural renal abnormalities identified, and there were no cervical spine abnormalities identified. Conclusions The data suggest that there is no increased prevalence of structural renal or cervical vertebral anomalies in patients with isolated microtia and/or aural atresia. Therefore, these patients do not require routine screening renal ultrasound or cervical spine X-rays.
Collapse
Affiliation(s)
- Shane Zim
- Providence Sacred Heart Children's Hospital, Spokane, Washington
| | - Janet Lee
- University of California, Davis Medical Center, Sacramento, California
| | - Brian Rubinstein
- Chief of Pediatric Otolaryngology, Kaiser Permanente, Roseville, California
| | - Craig Senders
- Department of Otolaryngology, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
17
|
Caron CJ, Pluijmers BI, Wolvius EB, Looman C.W, Bulstrode N, Evans RD, Ayliffe P, Mulliken JB, Dunaway D, Padwa B, Koudstaal MJ. Craniofacial and extracraniofacial anomalies in craniofacial microsomia: A multicenter study of 755 patients. J Craniomaxillofac Surg 2017; 45:1302-1310. [DOI: 10.1016/j.jcms.2017.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/06/2017] [Accepted: 06/01/2017] [Indexed: 01/25/2023] Open
|
18
|
Boer LL, Morava E, Klein WM, Schepens-Franke AN, Oostra RJ. Sirenomelia: A Multi-systemic Polytopic Field Defect with Ongoing Controversies. Birth Defects Res 2017; 109:791-804. [DOI: 10.1002/bdr2.1049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lucas L. Boer
- Department of Anatomy and Museum for Anatomy and Pathology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Eva Morava
- Department of Human Genetics, University of Leuven, Belgium; Hayward Genetics Center, Department of Pediatrics; Tulane University Medical School; New Orleans Louisiana
| | - Willemijn M. Klein
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - Annelieke N. Schepens-Franke
- Department of Anatomy and Museum for Anatomy and Pathology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Roelof Jan Oostra
- Department of Anatomy, Embryology and Physiology, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
19
|
Abstract
During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio) embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.
Collapse
|
20
|
McInerney-Leo AM, Sparrow DB, Harris JE, Gardiner BB, Marshall MS, O'Reilly VC, Shi H, Brown MA, Leo PJ, Zankl A, Dunwoodie SL, Duncan EL. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Hum Mol Genet 2014; 24:1234-42. [DOI: 10.1093/hmg/ddu534] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Giampietro PF, Raggio CL, Blank RD, McCarty C, Broeckel U, Pickart MA. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol 2013; 4:94-105. [PMID: 23653580 DOI: 10.1159/000345329] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Congenital vertebral malformations (CVM) pose a significant health problem because they can be associated with spinal deformities, such as congenital scoliosis and kyphosis, in addition to various syndromes and other congenital malformations. Additional information remains to be learned regarding the natural history of congenital scoliosis and related health problems. Although significant progress has been made in understanding the process of somite formation, which gives rise to vertebral bodies, there is a wide gap in our understanding of how genetic factors contribute to CVM development. Maternal diabetes during pregnancy most commonly contributes to the occurrence of CVM, followed by other factors such as hypoxia and anticonvulsant medications. This review highlights several emerging clinical issues related to CVM, including pulmonary and orthopedic outcome in congenital scoliosis. Recent breakthroughs in genetics related to gene and environment interactions associated with CVM development are discussed. The Klippel-Feil syndrome which is associated with cervical segmentation abnormalities is illustrated as an example in which animal models, such as the zebrafish, can be utilized to provide functional evidence of pathogenicity of identified mutations.
Collapse
Affiliation(s)
- P F Giampietro
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisc., USA
| | | | | | | | | | | |
Collapse
|
22
|
Wei Q, Cai A, Wang X, Xie L, Wang B, Wang X. Value of 3-dimensional sonography for prenatal diagnosis of vertebral formation failure. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:595-607. [PMID: 23525384 DOI: 10.7863/jum.2013.32.4.595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES The purposes of this study were to explore the value of 3-dimensional sonography for diagnosis of vertebral formation failure in the developing fetus and to formulate antenatal sonographic diagnostic criteria for suspected vertebral formation failure based on a comparison of sonographic characteristics of the disorder with normal sonographic findings and other imaging data. METHODS This study included sonographic data from 30 healthy fetuses and 13 fetuses suspected to have vertebral formation failure. Three-dimensional reconstruction of sagittal sections of the physiologic curves of the cervicothoracic and lumbosacral regions of the healthy fetuses was performed, and reconstruction was also performed on selected areas of interest when vertebral malformation was suspected. Stored data were analyzed, and a comparison with other image data was performed using various methods. RESULTS Three-dimensional reconstruction was more suitable for fetal spinal sonography among the 30 healthy fetuses, and it was particularly superior in detecting the positions of spines with evident physiologic curvature. The images revealed suspected vertebral formation failure in 13 cases, and the confirmed findings included 7 cases of hemivertebrae, 2 cases of butterfly vertebrae, 2 cases of mixed malformations (butterfly vertebra and hemivertebra), and 1 case of a coronal cleft vertebra. One case was lost to follow-up. The sonographic characteristics were definite, and there were evident differences from the sonograms of spina bifida. CONCLUSIONS Three-dimensional sonography is helpful for detection of vertebral formation failure in the developing fetus and might provide prognostic information with the potential to ameliorate the progressive spinal deformities that can result from embryonic vertebral formation failure.
Collapse
Affiliation(s)
- Qiuju Wei
- Department of Ultrasound, Shengjing Hospital, China Medical University, 36 Sanhao St, 110004 Shenyang, Liaoning, China
| | | | | | | | | | | |
Collapse
|
23
|
Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. SCIENTIFICA 2012; 2012:152365. [PMID: 24278672 PMCID: PMC3820596 DOI: 10.6064/2012/152365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/11/2012] [Indexed: 06/02/2023]
Abstract
Congenital and idiopathic scoliosis represent disabling conditions of the spine. While congenital scoliosis (CS) is caused by morphogenic abnormalities in vertebral development, the cause(s) for idiopathic scoliosis is (are) likely to be varied, representing alterations in skeletal growth, neuromuscular imbalances, disturbances involving communication between the brain and spine, and others. Both conditions are characterized by phenotypic and genetic heterogeneities, which contribute to the difficulties in understanding their genetic basis that investigators face. Despite the differences between these two conditions there is observational and experimental evidence supporting common genetic mechanisms. This paper focuses on the clinical features of both CS and IS and highlights genetic and environmental factors which contribute to their occurrence. It is anticipated that emerging genetic technologies and improvements in phenotypic stratification of both conditions will facilitate improved understanding of the genetic basis for these conditions and enable targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Philip F. Giampietro
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
24
|
Sparrow DB, Chapman G, Smith AJ, Mattar MZ, Major JA, O'Reilly VC, Saga Y, Zackai EH, Dormans JP, Alman BA, McGregor L, Kageyama R, Kusumi K, Dunwoodie SL. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 2012; 149:295-306. [PMID: 22484060 DOI: 10.1016/j.cell.2012.02.054] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 02/15/2012] [Indexed: 12/16/2022]
Abstract
Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.
Collapse
Affiliation(s)
- Duncan B Sparrow
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|