1
|
Zhang C, Dong C, Liu X, Zhang J, Li Q, Chen S, Zhao H, Huang D. Recent Studies on the Effects of Static Magnetic Fields (SMF) on Reproductive Function. Curr Issues Mol Biol 2025; 47:116. [PMID: 39996837 PMCID: PMC11854862 DOI: 10.3390/cimb47020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND With the widespread use of static magnetic fields (SMFs) in applications such as magnetic resonance imaging (MRI) and electric vehicles, concerns have arisen regarding their potential effects on reproductive health. Despite increasing research, the impact of SMFs on reproductive function remains a subject of debate, requiring further exploration. METHODS This review synthesizes animal and clinical studies on the effects of SMF on reproductive function. It examines various SMF intensities and exposure durations, focusing on mitochondrial function, chromosomal division, and embryonic development. RESULTS The review reveals that low-intensity SMF exposure adversely affects mitochondrial function in sperm and eggs, reducing their activity. It also impacts follicular cells, delaying chromosomal division. Medium- and high-intensity SMF exposure shows mixed results, with both potential benefits and risks, requiring further research. High-intensity SMFs may pose teratogenic risks to embryos and delay the development of fertilized eggs. The position of SMF exposure also matters, likely due to field non-uniformity. CONCLUSIONS This review provides a foundation for further investigation into the effects of SMFs on reproductive function, highlighting the need for more comprehensive studies to assess safety and applications. Special caution is advised for pregnant women regarding SMF exposure, given its potential risks.
Collapse
Affiliation(s)
- Chengchang Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
| | - Chengle Dong
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
| | - Xiaohang Liu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
| | - Jiaxing Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
| | - Qinlan Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
| | - Shuting Chen
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
| | - Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (C.D.); (X.L.); (J.Z.); (Q.L.); (S.C.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518109, China
| |
Collapse
|
2
|
Song C, Yu B, Wang J, Zhu Y, Zhang X. Effects of Moderate to High Static Magnetic Fields on Reproduction. Bioelectromagnetics 2022; 43:278-291. [PMID: 35485707 DOI: 10.1002/bem.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/09/2022] [Accepted: 04/09/2022] [Indexed: 11/08/2022]
Abstract
With the wide application of magnetic resonance imaging in hospitals and permanent magnets in household items, people have increased exposure to various types of static magnetic fields (SMFs) with moderate and high intensities, which has caused a considerable amount of public concern. Studies have shown that some aspects of gametogenesis and early embryonic development can be significantly affected by SMFs, while others have shown no effects. This review summarizes the experimental results of moderate to high-intensity SMFs (1 mT-16.7 T) on the reproductive development of different model animals, and we find that the effects of SMFs are variable depending on experimental conditions. In general, the effects of inhomogeneous SMFs seem to be more significant compared to that of homogeneous SMFs, which is likely due to magnetic forces generated by the magnetic field gradient. Moreover, some electromagnetic fields may have induced bioeffects because of nonnegligible gradient and heat effect, which are much reduced in superconducting magnets. We hope this review can provide a starting point for more in-depth analysis of various SMFs on reproduction, which is indispensable for evaluating the safety and potential applications of SMFs on living organisms in the future. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Junjun Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yiming Zhu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| |
Collapse
|
3
|
Ge S, Li J, Huang D, Cai Y, Fang J, Jiang H, Hu B. Strong static magnetic field delayed the early development of zebrafish. Open Biol 2019; 9:190137. [PMID: 31662097 PMCID: PMC6833226 DOI: 10.1098/rsob.190137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the major topics in magnetobiology is the biological effects of strong static magnetic field (SMF) on living organisms. However, there has been a paucity of the comprehensive study of the long-term effects of strong SMF on an animal's development. Here, we explored this question with zebrafish, an excellent model organism for developmental study. In our research, zebrafish eggs, just after fertilization, were exposed to a 9.0 T SMF for 24 h, the critical period of post-fertilization development from cleavage to segmentation. The effects of strong SMF exposure on the following developmental progress of zebrafish were studied until 6 days post-fertilization (dpf). Results showed that 9.0 T SMF exposure did not influence the survival or the general developmental scenario of zebrafish embryos. However, it slowed down the developmental pace of the whole animal, and the late developers would catch up with their control peers after the SMF was removed. We proposed a mechanical model and deduced that the development delaying effect was caused by the interference of SMF in microtubule and spindle positioning during mitosis, especially in early cleavages. Our research data provide insights into how strong SMF influences the developing organisms through basic physical interactions with intracellular macromolecules.
Collapse
Affiliation(s)
- Shuchao Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Jingchen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Dengfeng Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yuan Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Jun Fang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Science, Hefei, Anhui 230031, People's Republic of China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
4
|
Tian X, Wang D, Feng S, Zhang L, Ji X, Wang Z, Lu Q, Xi C, Pi L, Zhang X. Effects of 3.5-23.0 T static magnetic fields on mice: A safety study. Neuroimage 2019; 199:273-280. [PMID: 31158482 DOI: 10.1016/j.neuroimage.2019.05.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
People are exposed to various magnetic fields, including the high static/steady magnetic field (SMF) of MRI, which has been increased to 9.4 T in preclinical investigations. However, relevant safety studies about high SMF are deficient. Here we examined whether 3.5-23.0 T SMF exposure for 2 h has severe long-term effects on mice using 112 C57BL/6J mice. The food/water consumption, blood glucose levels, blood routine, blood biochemistry, as well as organ weight and HE stains were all examined. The food consumption and body weight were slightly decreased for 23.0 T-exposed mice (14.6%, P < 0.01, and 1.75-5.57%, P < 0.05, respectively), but not the other groups. While total bilirubin (TBIL), white blood cells, platelet and lymphocyte numbers were affected by some magnetic conditions, most of them were still within normal reference range. Although 13.5 T magnetic fields with the highest gradient (117.2 T/m) caused spleen weight increase, the blood count and biochemistry results were still within the control reference range. Moreover, the highest field 23.0 T with no gradient did not cause organ weight or blood biochemistry abnormality, which indicates that field gradient is a key parameter. Collectively, these data suggest 3.5-23.0 T static magnetic field exposure for 2 h do not have severe long-term effects on mice.
Collapse
Affiliation(s)
- Xiaofei Tian
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Shuang Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ze Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, PR China; Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, Anhui, 230031, PR China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Li Pi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
5
|
El-Hussein A, Kasem MA, El Hakim Saad A, Hamblin MR, Harith MA. WITHDRAWN: An extremely low frequency-weak magnetic field can induce alterations in a biological system: A case study in chick embryo development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018:S0079-6107(18)30202-5. [PMID: 30365971 DOI: 10.1016/j.pbiomolbio.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). These articles are retracted at the request of the authors. The joint Editors-in-Chief agree with this decision.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - M A Kasem
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - M A Harith
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| |
Collapse
|
6
|
Maliszewska J, Marciniak P, Kletkiewicz H, Wyszkowska J, Nowakowska A, Rogalska J. Electromagnetic field exposure (50 Hz) impairs response to noxious heat in American cockroach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:605-611. [PMID: 29721708 PMCID: PMC5966488 DOI: 10.1007/s00359-018-1264-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/29/2022]
Abstract
Exposure to electromagnetic field (EMF) induces physiological changes in organism that are observed at different levels—from biochemical processes to behavior. In this study, we evaluated the effect of EMF exposure (50 Hz, 7 mT) on cockroach’s response to noxious heat, measured as the latency to escape from high ambient temperature. We also measured the levels of lipid peroxidation and glutathione content as markers of oxidative balance in cockroaches exposed to EMF. Our results showed that exposure to EMF for 24, 72 h and 7 days significantly increases the latency to escape from noxious heat. Malondialdehyde (MDA) levels increased significantly after 24-h EMF exposure and remained elevated up to 7 days of exposure. Glutathione levels significantly declined in cockroaches exposed to EMF for 7 days. These results demonstrate that EMF exposure is a considerable stress factor that affects oxidative state and heat perception in American cockroach.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland.
| | | | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Nowakowska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
7
|
Todorović D, Perić-Mataruga V, Mirčić D, Ristić-Djurović J, Prolić Z, Petković B, Savić T. Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong static magnetic field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5305-5314. [PMID: 25475617 DOI: 10.1007/s11356-014-3910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
As an ecological factor, a magnetic field can affect insects causing a wide range of responses. The main purpose of this study was to analyze the fitness components (postembryonic development and viability of individuals) and the antioxidant defense (superoxide dismutase, catalase, and total glutathione) in laboratory strains of Drosophila subobscura, originating from oak and beech forests after exposure to the strong static magnet (2.4 T, VINCY Cyclotron magnet). The first instar larvae were placed near the north pole (N group) or the south pole (S group) of the magnet for 2 h. Oak and beech populations of D. subobscura had longer development time and lower viability in N and S groups compared to controls. These differences were significant only in S group of oak population and in N group of beech population. Total glutathione content was significantly decreased in both exposed groups of oak population, while catalase activity was significantly increased in both exposed groups of beech population. Being significantly decreased in both exposed groups of oak population and significantly increased in S group of beech population in comparison to controls, superoxide dismutase activity was observed in different values. According to the results, it can be stated that applied static magnetic field could be considered a potential stressor influencing the fitness components and antioxidant defense in Drosophila flies.
Collapse
Affiliation(s)
- Dajana Todorović
- Institute for Biological Research, University of Belgrade, 142 Despota Stefana Blvd., Belgrade, 11060, Serbia,
| | | | | | | | | | | | | |
Collapse
|
8
|
Wan GJ, Jiang SL, Zhao ZC, Xu JJ, Tao XR, Sword GA, Gao YB, Pan WD, Chen FJ. Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:7-15. [PMID: 24995837 DOI: 10.1016/j.jinsphys.2014.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Magnetic fields markedly affect the growth and development of many species of organisms potentially due to cryptochrome and endogenous presence of magnetic materials. Sensitivity to magnetic fields can also be involved in geomagnetic orientation by some long-distance migratory insects. In this study, near-zero magnetic fields (NZMF) in relation to normal geomagnetic fields (GMF) were setup using the Hypomagnetic Field Space System (HMFs) to investigate the effects of magnetic fields on the growth, development and reproduction of two species of migratory planthopper, the small brown planthopper (abbr. SBPH), Laodelphax striatellus, and the brown planthopper (abbr. BPH), Nilaparvata lugens. Exposure of both L. striatellus and N. lugens to NZMF delayed egg and nymphal developmental durations and decreased adult weight and female fecundity. The 1st-5th instars of SBPH and BPH showed different responses to NZMF. The 4th instar was significantly affected by NZMF, especially for BPH males, in which NZMF exposure reduced the difference in development duration between females and males. Compared with GMF, the vitellogenin transcript levels of newly molted female adults and the number of eggs per female were significantly reduced in both planthopper species, indicating a negative effect on fertility under NZMF. Our findings provided experimental evidence that NZMF negatively affected the growth and development of SBPH and BPH, with particularly strong effects on reproduction.
Collapse
Affiliation(s)
- Gui-jun Wan
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shou-lin Jiang
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-chao Zhao
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-jing Xu
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-rong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Yue-bo Gao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Wei-dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fa-jun Chen
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Todorović D, Marković T, Prolić Z, Mihajlović S, Rauš S, Nikolić L, Janać B. The influence of static magnetic field (50 mT) on development and motor behaviour ofTenebrio(Insecta, Coleoptera). Int J Radiat Biol 2012; 89:44-50. [DOI: 10.3109/09553002.2012.715786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Todorović D, Mirčić D, Ilijin L, Mrdaković M, Vlahović M, Prolić Z, Mataruga VP. Effect of magnetic fields on antioxidative defense and fitness-related traits of Baculum extradentatum (insecta, phasmatodea). Bioelectromagnetics 2011; 33:265-73. [PMID: 21953292 DOI: 10.1002/bem.20709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/02/2011] [Indexed: 12/17/2022]
Abstract
This study aimed to determine the effect of magnetic fields on the antioxidative defense and fitness-related traits of Baculum extradentatum. Following exposure to magnetic fields, antioxidative defense (superoxide dismutase (SOD), catalase (CAT) activities, and total glutathione (GSH) content) and fitness-related traits (egg mortality, development dynamics, and mass of nymphs) were monitored in nymphs. The experimental groups were: control (kept out of influence of the magnets), a group exposed to a constant magnetic field (CMF) of 50 mT, and a group exposed to an alternating magnetic field (AMF) of 50 Hz, 6 mT. We found increased SOD and CAT activities in animals exposed to constant and AMFs, whereas GSH activity was not influenced by experimental magnetic fields. No differences were found in egg mortality between control and experimental groups. Significant differences in the time of development between the control and the CMF group were observed, as well as between the CMF and the AMF group. No differences were found in the mass of the nymphs between the three experimental groups. In conclusion, CMF and AMF have the possibility to modulate the antioxidative defense and some of the fitness-related traits in B. extradentatum.
Collapse
Affiliation(s)
- Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research, "Siniša Stanković", University of Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sheiman IM, Kreshchenko ND. Effects of Weak Electromagnetic Irradiation on Various Types of Behavior in the Mealworm Tenebrio Molitor. ACTA ACUST UNITED AC 2010; 40:863-8. [DOI: 10.1007/s11055-010-9335-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/09/2009] [Indexed: 10/19/2022]
|
12
|
Gao W, Liu Y, Zhou J, Pan H. Effects of a strong static magnetic field on bacteriumShewanella oneidensis: An assessment by using whole genome microarray. Bioelectromagnetics 2005; 26:558-63. [PMID: 16037957 DOI: 10.1002/bem.20133] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of a strong static 14.1 T magnetic field on log phase cells of bacterial strain Shewanella oneidensis MR-1 was evaluated by using whole genome microarray of this bacterium. Although differences were not observed between the treatment and control by measuring the optical density (OD), colony forming unit (CFU), as well as post-exposure growth of cells, transcriptional expression levels of 65 genes were altered according to our microarray data. Among these genes, 21 were upregulated while other 44 were downregulated, compared with control.
Collapse
Affiliation(s)
- Weimin Gao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | |
Collapse
|
13
|
Elahee KB, Poinapen D. Effects of static magnetic fields on growth ofParamecium caudatum. Bioelectromagnetics 2005; 27:26-34. [PMID: 16283650 DOI: 10.1002/bem.20172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Little is known about the influence of magnetic fields on growth of primitive eukaryotes such as the ciliate Paramecium. The latter are known to exhibit interesting characteristics such as electrotaxis, gravitaxis, and membrane excitability not commonly encountered in higher organisms. This preliminary study reports the effects of static magnetic fields on growth of Paramecium caudatum. The microorganisms were either permanently or 24 h on-and-off exposed to North and South polarity magnetic fields of average field gradient 4.3 T/m, for a period of 96 h. The growth rate and lag phase of all exposed populations were not significantly different from control ones exposed to normal geomagnetic field (P > .05). However, a significant negative shift in t(max) (time taken for maximum growth) of 10.5%-12.2% and a significant decrease (P < .05) in population size of 10.2%-15.1% during the 96 h of experimental conditions were recorded for exposed populations compared to control. Our results suggest that magnetic fields, irrespective of polarity and exposure period reduce Paramecium growth by triggering early senescence of the population. The mechanisms underlying the small changes in population growth are unknown at this level, but various hypotheses have been suggested, including disorganization of swimming patterns resulting from (i) changes in cell membrane electric potential due to high speed movement through a gradient magnetic field and (ii) thermodynamic effect of anisotropic magnetic energies on cell membrane components affecting functioning of calcium channels. Altered swimming movements could in turn affect highly orchestrated processes such as conjugation, essential for survival of the organisms during development of adverse environmental conditions as thought to occur in the closed culture system used in this study.
Collapse
|
14
|
Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D. Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 2005; 22:334-40. [PMID: 16106367 DOI: 10.1002/jmri.20398] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate whether static high magnetic fields (HMFs), in the range of 10-17 T, affect the cytoskeleton and cell organization in different types of mammalian cells, including fibroblasts, epithelial cells, and differentiating neurons. MATERIALS AND METHODS Cells were exposed to HMF for 30 or 60 minutes and subsequently assessed for viability. Cytoskeleton arrays and focal adhesions were visualized using immunofluorescence microscopy. RESULTS Cell exposure to HMF over 10 T in the case of cycling cells, and over 15 T in the case of neurons, affected cell viability, apparently because of cell detachment from culture dishes. In the remaining adherent cells, the organization of actin assemblies was perturbed, and both cell adhesion and spreading were impaired. Moreover, in the case of neurons, exposure to HMF induced growth cone retraction and delayed cell differentiation. CONCLUSION Cell exposure to HMF (over 10T and 15 T in the case of cycling cells and neurons, respectively) affects the cell cytoskeleton, with deleterious effects on cell viability, organization, and differentiation. Further studies are needed to determine whether such perturbations, as observed here in cultured cells, have consequences in whole animals.
Collapse
Affiliation(s)
- Odile Valiron
- Institut National de la Santé et de la Recherche Médicale Unité 366, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|