1
|
Luukkonen J, Roivainen P, Nieminen V, Naarala J, Mustafa E, Juutilainen J. Carcinogenicity of extremely low-frequency magnetic fields: A systematic review of animal studies. ENVIRONMENTAL RESEARCH 2025; 279:121819. [PMID: 40373993 DOI: 10.1016/j.envres.2025.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Possible carcinogenicity of extremely low frequency (ELF) magnetic fields (MFs), associated with the use and transmission of electricity, has been under scientific and public debate for decades. This review aims to provide an update on studies testing carcinogenicity of ELF MFs in experimental animals. Emphasis was placed on identifying possible connections between study characteristics and the results obtained. This review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement, and the methodological quality of the studies was evaluated using the Risk of Bias Rating Tool for Human and Animal Studies developed by the National Toxicology Program's Office of Health Assessment and Translation (OHAT). Publication bias was assessed using the caliper test. Fifty-four eligible studies were identified. Despite poor ratings in certain aspects of the risk of bias evaluation, the quality of the studies was generally relatively good, with only four studies receiving the weakest rating. Overall, there was very little evidence that ELF MFs alone are carcinogenic. Evidence of co-carcinogenicity, from studies that have used ELF MFs in combination with other agents, remains inconclusive. A clear indication of publication bias was observed, though it is unlikely that this bias alone explains all reported MF-modified effects. Based on the current literature, future studies on co-carcinogenicity of ELF MFs should employ approaches other than classical initiation-promotion models. Additionally, well-designed studies to better understand the reported effects of ELF MFs and the underlying mechanisms are warmly welcomed.
Collapse
Affiliation(s)
- Jukka Luukkonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland.
| | - Päivi Roivainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Valtteri Nieminen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Jonne Naarala
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Ehab Mustafa
- DHI - Environment and Toxicology, Hørsholm, Denmark
| | - Jukka Juutilainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| |
Collapse
|
2
|
Brabant C, Honvo G, Demonceau C, Tirelli E, Léonard F, Bruyère O. Effects of extremely low frequency magnetic fields on animal cancer and DNA damage: A systematic review and meta-analysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:137-156. [PMID: 39746455 DOI: 10.1016/j.pbiomolbio.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The objective of this systematic review and meta-analysis was to assess the carcinogenic effects of extremely low frequency magnetic fields (ELF-MF) by analyzing animal and comet assay studies. We have performed a global meta-analysis on all the animal studies on the relation between ELF-MF and cancer incidence and separate meta-analyses on the incidence of cancer, leukemia, lymphoma, breast cancer, brain cancer and DNA damage assessed with the comet assay. Of the 5145 references identified, 71 studies have been included in our systematic review and 22 studies in our meta-analyses. Our global meta-analysis indicated that ELF-MF exposure had no significant impact on the incidence of cancers in rodents (19 studies, OR = 1.10; 95% CI 0.91-1.32). However, our separate meta-analyses showed that ELF-MF increased the odds of developing leukemia in mice (4 studies, OR = 4.45; 95% CI 1.90-10.38) but not in rats. Our systematic review also suggests that ELF-MF can damage DNA in certain cell types like brain cells. Nevertheless, a meta-analysis on three comet assay studies indicated that ELF-MF did not increase DNA damage in neuroblastoma cells (SMD = -0.08; 95% CI -0.18-0.01). Overall, our results suggest that exposure to ELF-MF does not represent a major hazard for mammals and the carcinogenic effects of these magnetic fields could be limited to leukemia.
Collapse
Affiliation(s)
- Christian Brabant
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Avenue Hippocrate, 13/B-23, B-4000, Liège, Belgium; Department of Psychology, Cognition and Behavior, University of Liège, Place des Orateurs, 2/B-32, B-4000, Liège, Belgium.
| | - Germain Honvo
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Avenue Hippocrate, 13/B-23, B-4000, Liège, Belgium
| | - Céline Demonceau
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Avenue Hippocrate, 13/B-23, B-4000, Liège, Belgium
| | - Ezio Tirelli
- Department of Psychology, Cognition and Behavior, University of Liège, Place des Orateurs, 2/B-32, B-4000, Liège, Belgium
| | - François Léonard
- Department of Psychology, Cognition and Behavior, University of Liège, Place des Orateurs, 2/B-32, B-4000, Liège, Belgium
| | - Olivier Bruyère
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Avenue Hippocrate, 13/B-23, B-4000, Liège, Belgium
| |
Collapse
|
3
|
LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci Rep 2017; 7:749. [PMID: 28389657 PMCID: PMC5429732 DOI: 10.1038/s41598-017-00913-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Our previous studies showed that low frequency magnetic fields (LF-MF) suppressed tumor growth and influenced the function of immune system. Nevertheless the mechanisms behind the effect of LF-MF still remain to be elucidated. In this study, Tumor- bearing mice subcutaneously inoculated with Lewis lung cancer cells were exposed to a LF-MF (0.4T, 7.5 Hz) for 35 days and Survival rate, tumor growth and the tumor markers were measured. Results showed that tumor growth was obviously inhibited with a prolonged survival of tumor- bearing mice by LF-MF exposure. In vitro experiments, LF-MF was found to induce cell growth arrest, cell senescence and inhibit iron metabolism of lung cancer cells. Moreover, LF-MF stabilized p53 protein via inhibiting cell iron metabolism and the stabilized p53 protein enhanced miR-34a transcription. Furthermore, increased expression of miR-34a induced cell proliferation inhibition, cell cycle arrest and cell senescence of lung cancer cells by targeting E2F1/E2F3. We also detected the relevant indicator in tumor tissue such as the iron content, the level of miR-34a and related protein, corresponding results were obtained. Taken together, these observations imply that LF-MF suppressed lung cancer via inhibiting cell iron metabolism, stabilizing p53 protein and activation P53- miR-34a-E2F1/E2F3 pathway.
Collapse
|
4
|
Nie Y, Chen Y, Mou Y, Weng L, Xu Z, Du Y, Wang W, Hou Y, Wang T. Low frequency magnetic fields enhance antitumor immune response against mouse H22 hepatocellular carcinoma. PLoS One 2013; 8:e72411. [PMID: 24278103 PMCID: PMC3835892 DOI: 10.1371/journal.pone.0072411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/16/2013] [Indexed: 12/05/2022] Open
Abstract
Objective Many studies have shown that magnetic fields (MF) inhibit tumor growth and influence the function of immune system. However, the effect of MF on mechanism of immunological function in tumor-bearing mice is still unclear. Methods In this study, tumor-bearing mice were prepared by subcutaneously inoculating Balb/c mice with hepatocarcinoma cell line H22. The mice were then exposed to a low frequency MF (0.4 T, 7.5 Hz) for 30 days. Survival rate, tumor growth and the innate and adaptive immune parameters were measured. Results MF treatment could prolong survival time (n = 28, p<0.05) and inhibit tumor growth (n = 9, p<0.01) in tumor-bearing mice. Moreover, this MF suppressed tumor-induced production of cytokines including interleukin-6 (IL-6), granulocyte colony- stimulating factor (G-CSF) and keratinocyte-derived chemokine (KC) (n = 9–10, p<0.05 or 0.01). Furthermore, MF exposure was associated with activation of macrophages and dendritic cells, enhanced profiles of CD4+ T and CD8+ T lymphocytes, the balance of Th17/Treg and reduced inhibitory function of Treg cells (n = 9–10, p<0.05 or 0.01) in the mice model. Conclusion The inhibitory effect of MF on tumor growth was related to the improvement of immune function in the tumor-bearing mice.
Collapse
Affiliation(s)
- Yunzhong Nie
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yueqiu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yongbin Mou
- Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, China
| | - Leihua Weng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Zhenjun Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Youwei Du
- National Laboratory of Solid Microstructures, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- * E-mail: (YH); (TW)
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- * E-mail: (YH); (TW)
| |
Collapse
|