1
|
Song K, Hu J, Yang M, Xia Y, He C, Yang Y, Zhu S. Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway. J Transl Med 2024; 22:741. [PMID: 39107784 PMCID: PMC11301989 DOI: 10.1186/s12967-024-05470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Pulsed electromagnetic fields (PEMFs) show promise as a treatment for knee osteoarthritis (KOA) by reducing inflammation and promoting chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). PURPOSE To identify the efficacy window of PEMFs to induce BMSCs chondrogenic differentiation and explore the cellular mechanism under chondrogenesis of BMSCs in regular and inflammatory microenvironments. METHODS BMSCs were exposed to PEMFs (75 Hz, 1.6/2/3/3.8 mT) for 7 and 14 days. The histology, proliferation, migration and chondrogenesis of BMSCs were assessed to identify the optimal parameters. Using these optimal parameters, transcriptome analysis was performed to identify target genes and signaling pathways, validated through immunohistochemical assays, western blotting, and qRT-PCR, with or without the presence of IL-1β. The therapeutic effects of PEMFs and the effective cellular signaling pathways were evaluated in vivo. RESULTS BMSCs treated with 3 mT PEMFs showed the optimal chondrogenesis on day 7, indicated by increased expression of ACAN, COL2A, and SOX9, and decreased levels of MMP3 and MMP13 at both transcriptional and protein levels. The advantages of 3 mT PEMFs diminished in the 14-day culture groups. Transcriptome analysis identified sFRP3 as a key molecule targeted by PEMF treatment, which competitively inhibited Wnt/β-catenin signaling, regardless of IL-1β presence or duration of exposure. This inhibition of the Wnt/β-catenin pathway was also confirmed in a KOA mouse model following PEMF exposure. CONCLUSIONS PEMFs at 75 Hz and 3 mT are optimal in inducing early-stage chondrogenic differentiation of BMSCs. The induction and chondroprotective effects of PEMFs are mediated by sFRP3 and Wnt/β-catenin signaling, irrespective of inflammatory conditions.
Collapse
Affiliation(s)
- Kangping Song
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jing Hu
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Yong Xia
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonghong Yang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
| | - Siyi Zhu
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Hu X, Su Y, Xu J, Cheng YY, Liu T, Li X, Ma X, Chen Z, Song K. Electromagnetic field-mediated chitosan/gelatin/nano-hydroxyapatite and bone-derived scaffolds regulate the osteoblastic and chondrogenic phenotypes of adipose-derived stem cells to construct osteochondral tissue engineering niche in vitro. Int J Biol Macromol 2024; 258:128829. [PMID: 38128807 DOI: 10.1016/j.ijbiomac.2023.128829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
It is critical to explore the effects of electromagnetic field (EMF) on the construction of functional osteochondral tissue, which has shown certain clinical significance for the treatment of osteochondral injury. At present, there are few studies on the effect of the direction of EMF on cells. This study aimed to investigate the effects of EMF coupling on different parameters to control adipose-derived stem cells (ADSCs) proliferation and specific chondrogenic and osteogenic differentiation at 2D level and 3D level. The proliferation and differentiation of EMF-induced ADSCs are jointly regulated by EMF and space structure. In this study, Cs7/Gel3/nHAP scaffolds were prepared with good degradation rate (86.75 ± 4.96 %) and absorb water (1100 %), and the pore size was 195.63 ± 54.72 μm. The bone-derived scaffold with a pore size of 267.17 ± 129.18 μm was obtained and its main component was hydroxyapatite. Cs7/Gel3/nHAP scaffolds and bone-derived scaffolds are suitable as 3D level materials. The optimal EMF intensity was 2 mT for chondrogenic differentiation and proliferation and 1 mT for osteogenic differentiation and proliferation. It is noteworthy that EMF has a negative correlation with ADSCs proliferation in the vertical direction at 2D level, while it has a positive correlation with ADSCs proliferation at 3D level. EMF mediated 3D osteochondral scaffold provide good strategy for osteochondral tissue engineering construction.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiao Ma
- Department of Anesthesia, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Zhen Chen
- Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Maiullari S, Cicirelli A, Picerno A, Giannuzzi F, Gesualdo L, Notarnicola A, Sallustio F, Moretti B. Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress. Int J Mol Sci 2023; 24:16631. [PMID: 38068954 PMCID: PMC10706358 DOI: 10.3390/ijms242316631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage.
Collapse
Affiliation(s)
- Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Angela Notarnicola
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Biagio Moretti
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| |
Collapse
|
4
|
Moretti L, Bizzoca D, Geronimo A, Abbaticchio AM, Moretti FL, Carlet A, Fischetti F, Moretti B. Targeting Adenosine Signalling in Knee Chondropathy: The Combined Action of Polydeoxyribonucleotide and Pulsed Electromagnetic Fields: A Current Concept Review. Int J Mol Sci 2023; 24:10090. [PMID: 37373237 PMCID: PMC10298276 DOI: 10.3390/ijms241210090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chondropathy of the knee is one of the most frequent degenerative cartilage pathologies with advancing age. Scientific research has, in recent years, advanced new therapies that target adenosine A2 receptors, which play a significant role in human health against many disease states by activating different protective effects against cell sufferance and damage. Among these, it has been observed that intra-articular injections of polydeoxyribonucleotides (PDRN) and Pulsed Electromagnetic Fields (PEMF) can stimulate the adenosine signal, with significant regenerative and healing effects. This review aims to depict the role and therapeutic modulation of A2A receptors in knee chondropathy. Sixty articles aimed at providing data for our study were included in this review. The present paper highlights how intra-articular injections of PDRN create beneficial effects by reducing pain and improving functional clinical scores, thanks to their anti-inflammatory action and the important healing and regenerating power of the stimulation of cell growth, production of collagen, and the extracellular matrix. PEMF therapy is a valid option in the conservative treatment of different articular pathologies, including early OA, patellofemoral pain syndrome, spontaneous osteonecrosis of the knee (SONK), and in athletes. PEMF could also be used as a supporting therapy after an arthroscopic knee procedure total knee arthroplasty to reduce the post-operative inflammatory state. The proposal of new therapeutic approaches capable of targeting the adenosine signal, such as the intra-articular injection of PDRN and the use of PEMF, has shown excellent beneficial results compared to conventional treatments. These are presented as an extra weapon in the fight against knee chondropathy.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Davide Bizzoca
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
- Ph.D. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Geronimo
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | - Francesco Luca Moretti
- National Centre for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, 00161 Rome, Italy
| | - Arianna Carlet
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Fischetti
- Departement DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
5
|
Mazzotti A, Langone L, Artioli E, Zielli SO, Arceri A, Setti S, Leigheb M, Samaila EM, Faldini C. Applications and Future Perspective of Pulsed Electromagnetic Fields in Foot and Ankle Sport-Related Injuries. APPLIED SCIENCES 2023; 13:5807. [DOI: 10.3390/app13095807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Foot and ankle injuries are common in many sports. One of the main athletes issues is the time for sport resumption after trauma. Recently, extensive efforts have been made to speed up the athletes’ return-to-sport and to prevent joint degeneration. Among the conservative treatment options, biophysical stimulation with pulsed electromagnetic fields (PEMFs) is listed. This narrative review aims to outline current applications of PEMFs in main foot and ankle sport-related injuries, in particular in the treatment of bone marrow edema, osteochondral defects, fractures, and nonunions. Despite further high-quality studies on foot and ankle injuries are needed, PEMFs seem to be a valid aid to enhance the endogenous osteogenesis, to resolve the bone marrow edema, to inhibit the joint inflammation, preserving articular cartilage degeneration, and to relieve pain.
Collapse
Affiliation(s)
- Antonio Mazzotti
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Langone
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elena Artioli
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Simone Ottavio Zielli
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alberto Arceri
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | | | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elena Manuela Samaila
- Department of Orthopedics and Trauma Surgery, University of Verona, Surgical Center “P. Confortini”, P.le A. Stefani, 1, 37126 Verona, Italy
| | - Cesare Faldini
- IRCCS Istituto Ortopedico Rizzoli, 1st Orthopaedics and Traumatology Clinic, University of Bologna, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Paolucci T, Porto D, Pellegrino R, Sina O, Fero A, D’Astolfo S, Franceschelli S, Patruno A, Fusco A, Pesce M. Combined Rehabilitation Protocol in the Treatment of Osteoarthritis of the Knee: Comparative Study of Extremely Low-Frequency Magnetic Fields and Soft Elastic Knee Brace Effect. Healthcare (Basel) 2023; 11:1221. [PMID: 37174763 PMCID: PMC10178194 DOI: 10.3390/healthcare11091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The investigation of this observational case-control study aimed at determining the effectiveness of a combined treatment of extremely low-frequency electromagnetic fields (ELF) with a soft elastic knee brace versus ELF alone in knee osteoarthritis (KOA) with respect to a reduction in pain and functional recovery. We hypothesized that the combined use of ELF and a soft elastic knee brace may provide better results. Thirty-five patients (N = 35, divided into Group 1 = ELF and Group 2 = ELF with the soft elastic knee brace) were analyzed. The rehabilitative protocol consisted of 10 sessions of antiphlogistic and antiedema programs (first cycle) for 2 weeks, followed by twelve sessions of bone repair and connective tissue repair programs (second cycle) in patients with knee osteoarthritis (KOA) for 4 weeks. Patient evaluations were conducted at baseline (T0) and after 2 (T1) and 4 (T2) weeks of treatment. A follow-up evaluation was conducted 6 weeks after treatment (T3). The LIMFA© Therapy System was used to create multifrequency magnetoelectric fields with an intensity of 100 µT and a low-frequency field. The Incrediwear Cred 40 knee sleeve (Incred) was used for alleviating knee pain. The Visual Analogue Scale (VAS), the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the Lysholm score (Ls) were used as outcome measures. The results showed that pain at rest (Vr), pain in motion (Vm), KOOS, and Ls were significantly affected by ELF over time. In conclusion, Group 2 had a better response in terms of pain resolution at rest (p < 0.05) and a concurrent better response at T3 in terms of functional recovery (p < 0.05).
Collapse
Affiliation(s)
- Teresa Paolucci
- Department of Oral, Medical and Biotechnological Sciences, Physical Medicine and Rehabilitation, University of G. D’Annunzio Chieti-Pescara, 66100 Chieti, Italy
| | - Daniele Porto
- Unit of Physical Medicine and Rehabilitation, Don Orione Institute, 65128 Pescara, Italy
| | - Raffaello Pellegrino
- Department of Scientific Research, Campus Ludes, Semmelweis University, 6912 Lugano, Switzerland
| | - Ornela Sina
- Unit of Physical Medicine and Rehabilitation, Don Orione Institute, 65128 Pescara, Italy
| | - Andi Fero
- Unit of Physical Medicine and Rehabilitation, Don Orione Institute, 65128 Pescara, Italy
| | - Sara D’Astolfo
- Unit of Physical Medicine and Rehabilitation, Don Orione Institute, 65128 Pescara, Italy
| | - Sara Franceschelli
- Department of Medicine and Aging Science, University of G. D’Annunzio Chieti-Pescara, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Science, University of G. D’Annunzio Chieti-Pescara, 66100 Chieti, Italy
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Science, University of G. D’Annunzio Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Viganò M, Perucca Orfei C, Ragni E, Colombini A, de Girolamo L. Pain and Functional Scores in Patients Affected by Knee OA after Treatment with Pulsed Electromagnetic and Magnetic Fields: A Meta-Analysis. Cartilage 2021; 13:1749S-1760S. [PMID: 32508140 PMCID: PMC8808910 DOI: 10.1177/1947603520931168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of this systematic review and meta-analysis was to evaluate the effect of electromagnetic field treatment on the symptoms of knee osteoarthritis (OA). In addition, the influence of the type of control group and other covariates have been investigated to identify the sources of heterogeneity in the results of the available clinical trials. METHODS Randomized controlled trials reporting pulsed electromagnetic field-based therapies for the treatment of knee OA have been included. Main outcomes were self-reported pain and activity scores collected by Visual Analogue Scale (VAS) and/or Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) at short term after treatment. RESULTS Thirteen studies comprising 914 unique patients were included in the analysis. Overall reduction in pain score was observed after treatment (standardized mean difference -0.4059, P = 0.0091), while improvement in the activity score was not significant (standardized mean difference -0.4452, P = 0.0859). Type of control (i.e., placebo or alternative therapies) and time of follow-up resulted as the two major elements influencing the outcomes. Indeed, the restriction of the analysis to placebo-controlled trials demonstrated higher standardized mean differences between treatment and control groups, with lower P value for pain, while statistical significance became evident also for the activity score. On the contrary, no differences were observed pooling only studies comparing pulsed electromagnetic or magnetic fields to alternative treatments. In addition, longer follow-up correlated with lower differences between treated and control patients. CONCLUSIONS Pulsed electromagnetic field therapy effectively relieves knee OA symptoms at short term, but it is not superior to other conservative therapies such as physiotherapy.
Collapse
Affiliation(s)
- Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi,
Milano, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi,
Milano, Italy,Carlotta Perucca Orfei, Laboratorio di
Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via
R. Galeazzi 4, Milan 20161, Italy.
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi,
Milano, Italy
| | | | | |
Collapse
|
8
|
Barati M, Darvishi B, Javidi MA, Mohammadian A, Shariatpanahi SP, Eisavand MR, Madjid Ansari A. Cellular stress response to extremely low-frequency electromagnetic fields (ELF-EMF): An explanation for controversial effects of ELF-EMF on apoptosis. Cell Prolif 2021; 54:e13154. [PMID: 34741480 PMCID: PMC8666288 DOI: 10.1111/cpr.13154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Impaired apoptosis is one of the hallmarks of cancer, and almost all of the non‐surgical approaches of eradicating tumour cells somehow promote induction of apoptosis. Indeed, numerous studies have stated that non‐ionizing non‐thermal extremely low‐frequency magnetic fields (ELF‐MF) can modulate the induction of apoptosis in exposed cells; however, much controversy exists in observations. When cells are exposed to ELF‐EMF alone, very low or no statistically significant changes in apoptosis are observed. Contrarily, exposure to ELF‐EMF in the presence of a co‐stressor, including a chemotherapeutic agent or ionizing radiation, can either potentiate or inhibit apoptotic effects of the co‐stressor. In our idea, the main point neglected in interpreting these discrepancies is “the cellular stress responses” of cells following ELF‐EMF exposure and its interplay with apoptosis. The main purpose of the current review was to outline the triangle of ELF‐EMF, the cellular stress response of cells and apoptosis and to interpret and unify discrepancies in results based on it. Therefore, initially, we will describe studies performed on identifying the effect of ELF‐EMF on induction/inhibition of apoptosis and enumerate proposed pathways through which ELF‐EMF exposure may affect apoptosis; then, we will explain cellular stress response and cues for its induction in response to ELF‐EMF exposure; and finally, we will explain why such controversies have been observed by different investigators.
Collapse
Affiliation(s)
- Mojdeh Barati
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ali Mohammadian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Reza Eisavand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Moretti L, Bizzoca D, Giancaspro GA, Cassano GD, Moretti F, Setti S, Moretti B. Biophysical Stimulation in Athletes' Joint Degeneration: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1206. [PMID: 34833424 PMCID: PMC8619315 DOI: 10.3390/medicina57111206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease and the main cause of pain and disability in elderly people. OA currently represents a significant social health problem, since it affects 250 million individuals worldwide, mainly adults aged over 65. Although OA is a multifactorial disease, depending on both genetic and environmental factors, it is reported that joint degeneration has a higher prevalence in former athletes. Repetitive impact and loading, joint overuse and recurrent injuries followed by a rapid return to the sport might explain athletes' predisposition to joint articular degeneration. In recent years, however, big efforts have been made to improve the prevention and management of sports injuries and to speed up the athletes' return-to-sport. Biophysics is the study of biological processes and systems using physics-based methods or based on physical principles. Clinical biophysics has recently evolved as a medical branch that investigates the relationship between the human body and non-ionizing physical energy. A physical stimulus triggers a biological response by regulating specific intracellular pathways, thus acting as a drug. Preclinical and clinical trials have shown positive effects of biophysical stimulation on articular cartilage, subchondral bone and synovia. This review aims to assess the role of pulsed electromagnetic fields (PEMFs) and extracorporeal shockwave therapy (ESWT) in the prevention and treatment of joint degeneration in athletes.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Davide Bizzoca
- PhD. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni Angelo Giancaspro
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Giuseppe Danilo Cassano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Francesco Moretti
- National Center for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefania Setti
- IGEA Spa-Clinical Biophysics, via Parmenide, 10/A, 41012 Carpi (Mo), Italy;
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| |
Collapse
|
10
|
Saghati S, Nasrabadi HT, Khoshfetrat AB, Moharamzadeh K, Hassani A, Mohammadi SM, Rahbarghazi R, Fathi Karkan S. Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Rev Rep 2021; 17:1294-1311. [PMID: 33547591 DOI: 10.1007/s12015-021-10130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Seyedeh Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Alekseeva LI, Byalovsky YY, Zagorodny NV, Ivanova GE, Karateev DE, Konchugova TV, Rakitina IS, Strakhov MA. [Pathophysiological mechanisms of the therapeutic action of alternating electromagnetic fields in the treatment of osteoarticular pathology]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2021; 98:80-90. [PMID: 34223758 DOI: 10.17116/kurort20219803180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of osteoarticular pathology with an alternating electromagnetic field (AEMF) is used today as a promising, non-invasive and safe strategy of physiotherapy. It has been shown that the action of alternating electromagnetic fields on the musculoskeletal system triggers signaling cascades that effectively contribute to the restoration of bone and articular tissue. The pathophysiological mechanisms underlying the cellular and subcellular effects of stimulation by an alternating electromagnetic field during the restoration of bone and articular tissue are considered. It was pointed out the several key signaling pathways involved in the restoration of bone and articular tissue under the influence of electromagnetic fields with an analysis of the potential for therapeutic application of electromagnetic fields alone or in combination with other available therapies.
Collapse
Affiliation(s)
- L I Alekseeva
- V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | | | - N V Zagorodny
- N.N. Priorov Central Research Institute of Traumatology and Orthopedics, Moscow, Russia
| | - G E Ivanova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - D E Karateev
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - T V Konchugova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - M A Strakhov
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
Krueger S, Riess A, Jonitz-Heincke A, Weizel A, Seyfarth A, Seitz H, Bader R. Establishment of a New Device for Electrical Stimulation of Non-Degenerative Cartilage Cells In Vitro. Int J Mol Sci 2021; 22:ijms22010394. [PMID: 33401406 PMCID: PMC7794805 DOI: 10.3390/ijms22010394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.
Collapse
Affiliation(s)
- Simone Krueger
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (A.J.-H.); (A.S.); (R.B.)
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany;
- Correspondence: (S.K.); (A.R.)
| | - Alexander Riess
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18051 Rostock, Germany;
- Correspondence: (S.K.); (A.R.)
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (A.J.-H.); (A.S.); (R.B.)
| | - Alina Weizel
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18051 Rostock, Germany;
| | - Anika Seyfarth
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (A.J.-H.); (A.S.); (R.B.)
| | - Hermann Seitz
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany;
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18051 Rostock, Germany;
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (A.J.-H.); (A.S.); (R.B.)
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany;
| |
Collapse
|
13
|
Pulsed Electromagnetic Field Inhibits Synovitis via Enhancing the Efferocytosis of Macrophages. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4307385. [PMID: 32596310 PMCID: PMC7273431 DOI: 10.1155/2020/4307385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/06/2020] [Indexed: 01/15/2023]
Abstract
Synovitis plays an important role in the pathogenesis of arthritis, which is closely related to the joint swell and pain of patients. The purpose of this study was to investigate the anti-inflammatory effects of pulsed electromagnetic fields (PEMF) on synovitis and its underlying mechanisms. Destabilization of the medial meniscus (DMM) model and air pouch inflammation model were established to induce synovitis in C57BL/6 mice. The mice were then treated by PEMF (pulse waveform, 1.5 mT, 75 Hz, 10% duty cycle). The synovitis scores as well as the levels of IL-1β and TNF-α suggested that PEMF reduced the severity of synovitis in vivo. Moreover, the proportion of neutrophils in the synovial-like layer was decreased, while the proportion of macrophages increased after PEMF treatment. In addition, the phagocytosis of apoptotic neutrophils by macrophages (efferocytosis) was enhanced by PEMF. Furthermore, the data from western blot assay showed that the phosphorylation of P38 was inhibited by PEMF. In conclusion, our current data show that PEMF noninvasively exhibits the anti-inflammatory effect on synovitis via upregulation of the efferocytosis in macrophages, which may be involved in the phosphorylation of P38.
Collapse
|
14
|
Stefani RM, Barbosa S, Tan AR, Setti S, Stoker AM, Ateshian GA, Cadossi R, Vunjak-Novakovic G, Aaron RK, Cook JL, Bulinski JC, Hung CT. Pulsed electromagnetic fields promote repair of focal articular cartilage defects with engineered osteochondral constructs. Biotechnol Bioeng 2020; 117:1584-1596. [PMID: 31985051 PMCID: PMC8845061 DOI: 10.1002/bit.27287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/14/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Clark T. Hung
- Columbia University, New York, NY
- Clark T. Hung, 351 Engineering Terrace Building, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, Tel: (212) 854-6542, Fax: (212) 854-8725,
| |
Collapse
|
15
|
Houpt JB, Gahunia HK, Pritzker KPH. Physical and Rehabilitative Therapy for Knee Articular Cartilage Injury and Disease. ARTICULAR CARTILAGE OF THE KNEE 2020:235-251. [DOI: 10.1007/978-1-4939-7587-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Wang T, Xie W, Ye W, He C. Effects of electromagnetic fields on osteoarthritis. Biomed Pharmacother 2019; 118:109282. [PMID: 31387007 DOI: 10.1016/j.biopha.2019.109282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA), characterized by joint malfunction and chronic disability, is the most common form of arthritis. The pathogenesis of OA is unclear, yet studies have shown that it is due to an imbalance between the synthesis and decomposition of chondrocytes, cell matrices and subchondral bone, which leads to the degeneration of articular cartilage. Currently, there are many therapies that can be used to treat OA, including the use of pulsed electromagnetic fields (PEMFs). PEMFs stimulate proliferation of chondrocytes and exert a protective effect on the catabolic environment. Furthermore, this technique is beneficial for subchondral trabecular bone microarchitecture and the prevention of subchondral bone loss, ultimately blocking the progression of OA. However, it is still unknown whether PEMFs could be used to treat OA in the clinic. Furthermore, the deeper signaling pathways underlying the mechanism by which PEMFs influence OA remain unclear.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xie
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenwen Ye
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Kavand H, van Lintel H, Renaud P. Efficacy of pulsed electromagnetic fields and electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca 2+ on chondrogenic differentiation. J Tissue Eng Regen Med 2019; 13:799-811. [PMID: 30793837 DOI: 10.1002/term.2829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Previous studies provide strong evidence for the therapeutic effect of electromagnetic fields (EMFs) on different tissues including cartilage. Diverse exposure parameters applied in scientific reports and the unknown interacting mechanism of EMF with biological systems make EMF studies challenging. In 1985, Liboff proposed that when magnetic fields are tuned to the cyclotron resonance frequencies of critical ions, the motion of ions through cell membranes is enhanced, and thus biological effects appear. Such exposure system consists of a weak alternating magnetic field (B1 ) in the presence of a static magnetic field (B0 ) and depends on the relationship between the magnitudes of B0 and B1 and the angular frequency Ω. The purpose of the present study is to determine the chondrogenic potential of EMF with regards to pulsed EMF (PEMF) and the ion cyclotron resonance (ICR) theory. We used different stimulating systems to generate EMFs in which cells are either stimulated with ubiquitous PEMF parameters, frequently reported, or parameters tuned to satisfy the ICR for Ca2+ (including negative and positive control groups). Chondrogenesis was analysed after 3 weeks of treatment. Cell stimulation under the ICR condition showed positive results in the context of glycosaminoglycans and type II collagen synthesis. In contrast, the other electromagnetically stimulated groups showed no changes compared with the control groups. Furthermore, gene expression assays revealed an increase in the expression of chondrogenic markers (COL2A1, SOX9, and ACAN) in the ICR group. These results suggest that the Ca2+ ICR condition can be an effective factor in inducing chondrogenesis.
Collapse
Affiliation(s)
- Hanie Kavand
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald van Lintel
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Renaud
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Vaca-González JJ, Guevara JM, Moncayo MA, Castro-Abril H, Hata Y, Garzón-Alvarado DA. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. Cartilage 2019; 10:157-172. [PMID: 28933195 PMCID: PMC6425540 DOI: 10.1177/1947603517730637] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
Collapse
Affiliation(s)
- Juan J. Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel A. Moncayo
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Hector Castro-Abril
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Yoshie Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
19
|
Gomes Gobbi R, Pastore E Silva AL, Kawamura Demange M, Pécora JR, Espregueira-Mendes J, Camanho GL. Clinical results of pulsed signal therapy on patellofemoral syndrome with patellar chondropathy. Bioelectromagnetics 2019; 40:83-90. [PMID: 30763468 DOI: 10.1002/bem.22172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
This study was designed to evaluate the effect of pulsed signal therapy (PST) on patellofemoral pain syndrome associated with patellar chondropathy. A prospective randomized double-blind placebo controlled trial included 25 patients (41 knees) between 20 and 50 years with pain due to isolated patellofemoral syndrome with chondropathy. PST group received nine 60-min daily sessions of PST treatment. Control group received the same protocol of blinded placebo treatment. The main outcome was change from baseline Kujala score at 3 months. After 3 months, patients in the control group received effective treatment (placebo post-treatment). All patients were then followed, for up to 12 months. Seventeen knees (5 males and 12 females, mean age 36.7 ± 7.9) received placebo and 24 knees (8 males and 16 females, mean age 35.5 ± 8.9) received PST. By the third month, PST group exhibited a mean change from baseline of 9.63 ± 7.5 Kujala points, compared to 0.53 ± 1.8 in the placebo group (P < 0.001). A significant progressive improvement was seen in the PST group between the 3rd and 6th and between the 6th and 12th month (P < 0.016). Patients initially allocated in the control group also improved at 3 months (P < 0.001) and 6 months (P = 0.005) post-effective treatment. In conclusion, PST in patellofemoral pain syndrome with chondropathy was effective compared to placebo at 3 months, showing an important improvement of Kujala score. The improvement was progressive and maintained up to 12 months. PST is safe and should be considered as a non-invasive option for management of this condition. Bioelectromagnetics. 40:83-90, 2019. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Riccardo Gomes Gobbi
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Marco Kawamura Demange
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - José Ricardo Pécora
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Orthopaedics Department of Minho University, Minho, Portugal.,3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco/Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gilberto Luis Camanho
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. INTERNATIONAL ORTHOPAEDICS 2019; 43:539-551. [PMID: 30645684 PMCID: PMC6399199 DOI: 10.1007/s00264-018-4274-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Biophysical stimulation is a non-invasive therapy used in orthopaedic practice to increase and enhance reparative and anabolic activities of tissue. METHODS A sistematic web-based search for papers was conducted using the following titles: (1) pulsed electromagnetic field (PEMF), capacitively coupled electrical field (CCEF), low intensity pulsed ultrasound system (LIPUS) and biophysical stimulation; (2) bone cells, bone tissue, fracture, non-union, prosthesis and vertebral fracture; and (3) chondrocyte, synoviocytes, joint chondroprotection, arthroscopy and knee arthroplasty. RESULTS Pre-clinical studies have shown that the site of interaction of biophysical stimuli is the cell membrane. Its effect on bone tissue is to increase proliferation, synthesis and release of growth factors. On articular cells, it creates a strong A2A and A3 adenosine-agonist effect inducing an anti-inflammatory and chondroprotective result. In treated animals, it has been shown that the mineralisation rate of newly formed bone is almost doubled, the progression of the osteoarthritic cartilage degeneration is inhibited and quality of cartilage is preserved. Biophysical stimulation has been used in the clinical setting to promote the healing of fractures and non-unions. It has been successfully used on joint pathologies for its beneficial effect on improving function in early OA and after knee surgery to limit the inflammation of periarticular tissues. DISCUSSION The pooled result of the studies in this review revealed the efficacy of biophysical stimulation for bone healing and joint chondroprotection based on proven methodological quality. CONCLUSION The orthopaedic community has played a central role in the development and understanding of the importance of the physical stimuli. Biophysical stimulation requires care and precision in use if it is to ensure the success expected of it by physicians and patients.
Collapse
Affiliation(s)
- Leo Massari
- University of Ferrara, Via Vigne 4, 44121, Ferrara, Italy.
| | - Franco Benazzo
- IRCCS Foundation "San Matteo" Hospital, University of Pavia, 27100, Pavia, Italy
| | | | | | | | | | | | | | - Carlo Ruosi
- Federico II University Naples, 80100, Naples, Italy
| | | |
Collapse
|
21
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
22
|
Stochastic Resonance with Dynamic Compression Improves the Growth of Adult Chondrocytes in Agarose Gel Constructs. Ann Biomed Eng 2018; 47:243-256. [PMID: 30187237 DOI: 10.1007/s10439-018-02123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023]
Abstract
Dynamic mechanical stimulation has been an effective method to improve the growth of tissue engineering cartilage constructs derived from immature cells. However, when more mature cell populations are used, results are often variable due to the differing responses of these cells to external stimuli. This can be especially detrimental in the case of mechanical loading. In previous studies, multi-modal mechanical stimulation in the form of stochastic resonance was shown to be effective at improving the growth of young bovine chondrocytes. Thus, the aim of this study was to investigate the short-term and long-term effects of stochastic resonance on two groups of bovine chondrocytes, adult (> 30 month) and juvenile (~ 18 months). While the juvenile cells outperformed the adult cells in terms of their anabolic response to loading, combined mechanical loading for both age groups resulted in greater matrix synthesis compared to compressive loading alone. In the adult cells, potential pathological tissue formation was evident with the presence of cell clustering. However, the presence of broad-band mechanical vibrations (alone or with compressive loading) appeared to mitigate this response and allow these cells to attain a growth response similar to the juvenile, unstimulated cells. Therefore, the use of stochastic resonance appears to show promise as a method to improve the formation and properties of tissue engineered cartilage constructs, irrespective of cell age.
Collapse
|
23
|
Dahmen J, Lambers KTA, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs GMMJ. No superior treatment for primary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc 2018; 26:2142-2157. [PMID: 28656457 PMCID: PMC6061466 DOI: 10.1007/s00167-017-4616-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this systematic literature review is to detect the most effective treatment option for primary talar osteochondral defects in adults. METHODS A literature search was performed to identify studies published from January 1996 to February 2017 using PubMed (MEDLINE), EMBASE, CDSR, DARE, and CENTRAL. Two authors separately and independently screened the search results and conducted the quality assessment using the Newcastle-Ottawa Scale. Subsequently, success rates per separate study were calculated. Studies methodologically eligible for a simplified pooling method were combined. RESULTS Fifty-two studies with 1236 primary talar osteochondral defects were included of which forty-one studies were retrospective and eleven prospective. Two randomised controlled trials (RCTs) were identified. Heterogeneity concerning methodological nature was observed, and there was variety in reported success rates. A simplified pooling method performed for eleven retrospective case series including 317 ankles in the bone marrow stimulation group yielded a success rate of 82% [CI 78-86%]. For seven retrospective case series investigating an osteochondral autograft transfer system or an osteoperiosteal cylinder graft insertion with in total 78 included ankles the pooled success rate was calculated to be 77% [CI 66-85%]. CONCLUSIONS For primary talar osteochondral defects, none of the treatment options showed any superiority over others. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Jari Dahmen
- Department of Orthopedic Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence based Sports medicine (ACES), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Kaj T A Lambers
- Department of Orthopedic Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence based Sports medicine (ACES), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mikel L Reilingh
- Department of Orthopedic Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence based Sports medicine (ACES), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Christiaan J A van Bergen
- Department of Orthopedic Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence based Sports medicine (ACES), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Orthopedic Surgery, Amphia Hospital, Breda, The Netherlands
| | - Sjoerd A S Stufkens
- Department of Orthopedic Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence based Sports medicine (ACES), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Academic Center for Evidence based Sports medicine (ACES), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Hiemer B, Krogull M, Bender T, Ziebart J, Krueger S, Bader R, Jonitz-Heincke A. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol Med Rep 2018; 18:2133-2141. [PMID: 29916541 PMCID: PMC6072227 DOI: 10.3892/mmr.2018.9174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
During joint movement and mechanical loading, electric potentials occur within cartilage tissue guiding cell development and regeneration. Exposure of cartilage exogenous electric stimulation (ES) may imitate these endogenous electric fields and promote healing processes. Therefore, the present study investigated the influence of electric fields on human chondrocytes, mesenchymal stem cells and the co-culture of the two. Human chondrocytes isolated from articular cartilage obtained post-mortally and human mesenchymal stem cells derived from bone marrow (BM-MSCs) were seeded onto a collagen-based scaffold separately or as co-culture. Following incubation with the growth factors over 3 days, ES was performed using titanium electrodes applying an alternating electric field (700 mV, 1 kHz). Cells were exposed to an electric field over 7 days under either hypoxic or normoxic culture conditions. Following this, metabolic activity was investigated and synthesis rates of extracellular matrix proteins were analyzed. ES did not influence metabolic activity of chondrocytes or BM-MSCs. Gene expression analyses demonstrated that ES increased the expression of collagen type II mRNA and aggrecan mRNA in human chondrocytes under hypoxic culture conditions. Likewise, collagen type II synthesis was significantly increased following exposure to electric fields under hypoxia. BM-MSCs and the co-culture of chondrocytes and BM-MSCs revealed a similar though weaker response regarding the expression of cartilage matrix proteins. The electrode setup may be a valuable tool to investigate the influence of ES on human chondrocytes and BM-MSCs contributing to fundamental knowledge including future applications of ES in cartilage repair.
Collapse
Affiliation(s)
- Bettina Hiemer
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Martin Krogull
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Thomas Bender
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Josefin Ziebart
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Simone Krueger
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| |
Collapse
|
25
|
Rescigno T, Capasso A, Bisceglia B, Tecce MF. Short Exposures to an Extremely Low-Frequency Magnetic Field (ELF MF) Enhance Protein but not mRNA Alkaline Phosphatase Expression in Human Osteosarcoma Cells. Open Biochem J 2018; 12:65-77. [PMID: 29760814 PMCID: PMC5906974 DOI: 10.2174/1874091x01812010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
Background Among electromagnetic fields treatments used in orthopedics, extremely low-frequency magnetic fields (ELF MF) need more detailed information about the molecular mechanisms of their effects and exposure conditions. Objective Evaluation of the effects of an ELF MF exposure system, recently introduced among current clinical treatments for fracture healing and other bone diseases, on Alkaline Phosphatase (ALP) activity and expression in a human osteosarcoma cell line (SaOS-2), as marker typically associated to osteogenesis and bone tissue regeneration. Method Cells were exposed to the ELF MF physical stimulus (75 Hz, 1.5 mT) for 1h. Cell viability, enzymatic activity, protein and mRNA expression of alkaline phosphatase were then measured at different times after exposure (0, 4 and 24 h). Results Data demonstrate that this signal is active on an osteogenic process already one hour after exposure. Treatment was, in fact, capable, even after an exposure shorter than those commonly used in clinical applications, to significantly up-regulate alkaline phosphatase enzymatic activity. This regulation is produced essentially through an increase of ALP protein level, without changes of its mRNA concentration, while assessed magnetic field did not affect cell growth and viability and did not produce temperature variations. Conclusion Tested low-frequency magnetic field affects cellular ALP expression with a posttranslational mechanism, without the involvement of regulations at gene transcription and mRNA level. This molecular effect is likely produced even within treated tissues during therapies with this signal and may be implicated in the induction of observed effects in treated patients.
Collapse
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Bruno Bisceglia
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | |
Collapse
|
26
|
Iwasa K, Reddi AH. Pulsed Electromagnetic Fields and Tissue Engineering of the Joints. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:144-154. [PMID: 29020880 DOI: 10.1089/ten.teb.2017.0294] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bone and joint formation, maintenance, and regeneration are regulated by both chemical and physical signals. Among the physical signals there is an increasing realization of the role of pulsed electromagnetic fields (PEMF) in the treatment of nonunions of bone fractures. The discovery of the piezoelectric properties of bone by Fukada and Yasuda in 1953 in Japan established the foundation of this field. Pioneering research by Bassett and Brighton and their teams resulted in the approval by the Food and Drug Administration (FDA) of the use of PEMF in the treatment of fracture healing. Although PEMF has potential applications in joint regeneration in osteoarthritis (OA), this evolving field is still in its infancy and offers novel opportunities. METHODS We have systematically reviewed the literature on the influence of PEMF in joints, including articular cartilage, tendons, and ligaments, of publications from 2000 to 2016. CONCLUSIONS PEMF stimulated chondrocyte proliferation, differentiation, and extracellular matrix synthesis by release of anabolic morphogens such as bone morphogenetic proteins and anti-inflammatory cytokines by adenosine receptors A2A and A3 in both in vitro and in vivo investigations. It is noteworthy that in clinical translational investigations a beneficial effect was observed on improving function in OA knees. However, additional systematic studies on the mechanisms of action of PEMF on joints and tissues therein, articular cartilage, tendons, and ligaments are required.
Collapse
Affiliation(s)
- Kenjiro Iwasa
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Davis, California
| | - A Hari Reddi
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Davis, California
| |
Collapse
|
27
|
Effect of electromagnetic fields on human osteoarthritic and non-osteoarthritic chondrocytes. Altern Ther Health Med 2017; 17:402. [PMID: 28806939 PMCID: PMC5556359 DOI: 10.1186/s12906-017-1868-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/04/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Studies of the effects of electromagnetic fields (EMFs) on cartilaginous cells show a broad range of outcomes. However EMFs are not yet clinically applied as standard treatment of osteoarthritis, as EMF effects are showing varying outcomes in the literature. The aim of this study was to examine effects of EMFs (5 mT or 8 mT) on osteoarthritic (OA) and non-OA chondrocytes in order to investigate whether EMF effects are related to chondrocyte and EMF quality. METHODS Pellets of human OA and non-OA chondrocytes were exposed to a sinusoidal 15 Hz EMF produced by a solenoid. Control groups were cultivated without EMF under standard conditions for 7 days. Cultures were examined by staining, immunohistochemistry and quantitative real-time PCR for RNA corresponding to cartilage specific proteins (COL2A1, ACAN, SOX9). RESULTS OA chondrocytes increased the expression of COL2A1 and ACAN under 5 mT EMF compared to control. In contrast no changes in gene expression were observed in non-OA chondrocytes. OA and non-OA chondrocytes showed no significant changes in gene expression under 8 mT EMF. CONCLUSION A 5 mT EMF increased the expression of cartilage specific genes in OA chondrocytes whereas in non-OA chondrocytes no changes in gene expression were observed. An 8 mT EMF however showed no effect altogether. This suggests that EMF effects are related to EMF but also to chondrocyte quality. Further studies about the clinical relevance of this effect are necessary.
Collapse
|
28
|
Bagheri L, Pellati A, Rizzo P, Aquila G, Massari L, De Mattei M, Ongaro A. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med 2017; 12:304-315. [PMID: 28482141 DOI: 10.1002/term.2455] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/26/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Pulsed electromagnetic fields (PEMFs) have been used to treat bone diseases, particularly nonunion healing. Although it is known that PEMFs promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs), to date PEMF molecular mechanisms remain not clearly elucidated. The Notch signalling is a highly conserved pathway that regulates cell fate decisions and skeletal development. The aim of this study was to investigate if the known PEMF-induced osteogenic effects may involve the modulation of the Notch pathway. To this purpose, during in vitro osteogenic differentiation of bone marrow hMSCs in the absence and in the presence of PEMFs, osteogenic markers (alkaline phosphatase activity, osteocalcin and matrix mineralization), the messenger ribonucleic acid expression of osteogenic transcription factors (Runx2, Dlx5, Osterix) as well as of Notch receptors (Notch1-4), their ligands (Jagged1, Dll1 and Dll4) and nuclear target genes (Hes1, Hes5, Hey1, Hey2) were investigated. PEMFs stimulated all osteogenic markers and increased the expression of Notch4, Dll4, Hey1, Hes1 and Hes5 in osteogenic medium compared to control. In the presence of DAPT and SAHM1, used as Notch pathway inhibitors, the expression of the osteogenic markers, including Runx2, Dlx5, Osterix, as well as Hes1 and Hes5 were significantly inhibited, both in unexposed and PEMF-exposed hMSCs. These results suggest that activation of Notch pathway is required for PEMFs-stimulated osteogenic differentiation. These new findings may be useful to improve autologous cell-based regeneration of bone defects in orthopaedics.
Collapse
Affiliation(s)
- Leila Bagheri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Leo Massari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Veronesi F, Dallari D, Sabbioni G, Carubbi C, Martini L, Fini M. Polydeoxyribonucleotides (PDRNs) From Skin to Musculoskeletal Tissue Regeneration via Adenosine A 2A Receptor Involvement. J Cell Physiol 2017; 232:2299-2307. [PMID: 27791262 DOI: 10.1002/jcp.25663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Polydeoxyribonucleotides (PDRNs) are low molecular weight DNA molecules of natural origin that stimulate cell migration and growth, extracellular matrix (ECM) protein production, and reduce inflammation. Most preclinical and clinical studies on tissue regeneration with PDRNs focused on skin, and only few are about musculoskeletal tissues. Starting from an overview on skin regeneration studies, through the analysis of in vitro, in vivo, and clinical studies (1990-2016), the present review aimed at defining the effects of PDRN and their mechanisms of action in the regeneration of musculoskeletal tissues. This would also help future researches in this area. A total of 29 studies were found by PubMed and www.webofknowledge.com searches: 20 were on skin (six in vitro, six in vivo, one vitro/vivo, seven clinical studies), while the other nine regarded bone (one in vitro, two in vivo, one clinical studies), cartilage (one in vitro, one vitro/vivo, two clinical studies), or tendon (one clinical study) tissues regeneration. PDRNs improved cell growth, tissue repair, ECM proteins, physical activity, and reduced pain and inflammation, through the activation of adenosine A2A receptor. PDRNs are currently used for bone, cartilage, and tendon diseases, with a great variability regarding the PDRN dosage to be used in clinical practice, while the dosage for skin regeneration is well established. PDRNs are usually administered from a minimum of three to a maximum of five times and they act trough the activation of A2A receptor. Further studies are advisable to confirm the effectiveness of PDRNs and to standardize the PDRN dose. J. Cell. Physiol. 232: 2299-2307, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano, Bologna, Italy
| | - Dante Dallari
- Conservative Orthopedic Surgery and Innovative Techniques Ward, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giacomo Sabbioni
- Conservative Orthopedic Surgery and Innovative Techniques Ward, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Chiara Carubbi
- Conservative Orthopedic Surgery and Innovative Techniques Ward, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Lucia Martini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano, Bologna, Italy
| |
Collapse
|
30
|
Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators Inflamm 2017; 2017:2740963. [PMID: 28255202 PMCID: PMC5309410 DOI: 10.1155/2017/2740963] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs) on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.
Collapse
|
31
|
Yang X, He H, Zhou Y, Zhou Y, Gao Q, Wang P, He C. Pulsed electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: Effect on subchondral trabecular bone microarchitecture and cartilage degradation. Bioelectromagnetics 2016; 38:227-238. [PMID: 28026095 DOI: 10.1002/bem.22028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 12/03/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaotian Yang
- Department of Rehabilitation Medicine; West China Hospital; Sichuan University; Chengdu China
- Key Laboratory of Rehabilitation Medicine in Sichuan; Chengdu China
| | - Hongchen He
- Department of Rehabilitation Medicine; West China Hospital; Sichuan University; Chengdu China
- Key Laboratory of Rehabilitation Medicine in Sichuan; Chengdu China
| | - Yuan Zhou
- Institute for Disaster Management and Reconstruction of Sichuan University and Hong Kong Polytechnic University; Chengdu China
| | - Yujing Zhou
- Department of Rehabilitation Medicine; West China Hospital; Sichuan University; Chengdu China
- Key Laboratory of Rehabilitation Medicine in Sichuan; Chengdu China
| | - Qiang Gao
- Department of Rehabilitation Medicine; West China Hospital; Sichuan University; Chengdu China
- Key Laboratory of Rehabilitation Medicine in Sichuan; Chengdu China
| | - Pu Wang
- Department of Rehabilitation Medicine; West China Hospital; Sichuan University; Chengdu China
- Key Laboratory of Rehabilitation Medicine in Sichuan; Chengdu China
| | - Chengqi He
- Department of Rehabilitation Medicine; West China Hospital; Sichuan University; Chengdu China
- Key Laboratory of Rehabilitation Medicine in Sichuan; Chengdu China
- Institute for Disaster Management and Reconstruction of Sichuan University and Hong Kong Polytechnic University; Chengdu China
| |
Collapse
|
32
|
Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Setti S, Cadossi R, Borea PA, Varani K. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells. J Cell Physiol 2016; 232:1200-1208. [PMID: 27639248 DOI: 10.1002/jcp.25606] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
Abstract
In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Annalisa Ravani
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | | - Pier Andrea Borea
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Miller SL, Coughlin DG, Waldorff EI, Ryaby JT, Lotz JC. Pulsed electromagnetic field (PEMF) treatment reduces expression of genes associated with disc degeneration in human intervertebral disc cells. Spine J 2016; 16:770-6. [PMID: 26780754 DOI: 10.1016/j.spinee.2016.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/17/2015] [Accepted: 01/01/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Pulsed electromagnetic field (PEMF) therapies have been applied to stimulate bone healing and to reduce the symptoms of arthritis, but the effects of PEMF on intervertebral disc (IVD) biology is unknown. PURPOSE The purpose of this study was to determine how PEMF affects gene expression of IVD cells in normal and inflammatory environments. STUDY DESIGN/SETTING This was an in vitro human cell culture and microarray gene expression study. METHODS Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were separately encapsulated in alginate beads and exposed to interleukin 1α (IL-1α) (10 ng/mL) to stimulate the inflammatory environment associated with IVD degeneration and/or stimulated by PEMF for 4 hours daily for up to 7 days. RNA was isolated from each treatment group and analyzed via microarray to assess IL-1α- and PEMF-induced changes in gene expression. RESULTS Although PEMF treatment did not completely inhibit the effects of IL-1α, PEMF treatment lessened the IL-1α-induced upregulation of genes expressed in degenerated IVDs. Consistent with our previous results, after 4 days, PEMF tended to reduce IL-1α-associated gene expression of IL-6 (25%, p=.07) in NP cells and MMP13 (26%, p=.10) in AF cells. Additionally, PEMF treatment significantly diminished IL-1α-induced gene expression of IL-17A (33%, p=.01) and MMP2 (24%, p=.006) in NP cells and NFκB (11%, p=.04) in AF cells. CONCLUSIONS These results demonstrate that IVD cells are responsive to PEMF and motivate future studies to determine whether PEMF may be helpful for patients with IVD degeneration.
Collapse
Affiliation(s)
- Stephanie L Miller
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Ave, S-1161, Box 0514, San Francisco, CA, 94143, USA
| | - Dezba G Coughlin
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Ave, S-1161, Box 0514, San Francisco, CA, 94143, USA
| | - Erik I Waldorff
- Orthofix, Inc., 3451 Plano Parkway, Lewisville, TX 75056, USA
| | - James T Ryaby
- Orthofix, Inc., 3451 Plano Parkway, Lewisville, TX 75056, USA
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Ave, S-1161, Box 0514, San Francisco, CA, 94143, USA.
| |
Collapse
|
34
|
Reilingh ML, van Bergen CJA, Gerards RM, van Eekeren IC, de Haan RJ, Sierevelt IN, Kerkhoffs GMMJ, Krips R, Meuffels DE, van Dijk CN, Blankevoort L. Effects of Pulsed Electromagnetic Fields on Return to Sports After Arthroscopic Debridement and Microfracture of Osteochondral Talar Defects: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Am J Sports Med 2016; 44:1292-1300. [PMID: 26903214 DOI: 10.1177/0363546515626544] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral defects (OCDs) of the talus usually affect athletic patients. The primary surgical treatment consists of arthroscopic debridement and microfracture. Various possibilities have been suggested to improve the recovery process after debridement and microfracture. A potential solution to obtain this goal is the application of pulsed electromagnetic fields (PEMFs), which stimulate the repair process of bone and cartilage. HYPOTHESIS The use of PEMFs after arthroscopic debridement and microfracture of an OCD of the talus leads to earlier resumption of sports and an increased number of patients that resume sports. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A total of 68 patients were randomized to receive either PEMFs (n = 36) or placebo (n = 32) after arthroscopic treatment of an OCD of the talus. The primary outcomes (ie, the number of patients who resumed sports and time to resumption of sports) were analyzed with Kaplan-Meier curves as well as Mann-Whitney U, chi-square, and log-rank tests. Secondary functional outcomes were assessed with questionnaires (American Orthopaedic Foot and Ankle Society ankle-hindfoot score, Foot and Ankle Outcome Score, EuroQol, and numeric rating scales for pain and satisfaction) at multiple time points up to 1-year follow-up. To assess bone repair, computed tomography scans were obtained at 2 weeks and 1 year postoperatively. RESULTS Almost all outcome measures improved significantly in both groups. The percentage of sport resumption (PEMF, 79%; placebo, 80%; P = .95) and median time to sport resumption (PEMF, 17 weeks; placebo, 16 weeks; P = .69) did not differ significantly between the treatment groups. Likewise, there were no significant between-group differences with regard to the secondary functional outcomes and the computed tomography results. CONCLUSION PEMF does not lead to a higher percentage of patients who resume sports or to earlier resumption of sports after arthroscopic debridement and microfracture of talar OCDs. Furthermore, no differences were found in bone repair between groups. REGISTRATION Netherlands Trial Register NTR1636.
Collapse
Affiliation(s)
- Mikel L Reilingh
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Christiaan J A van Bergen
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Rogier M Gerards
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Inge C van Eekeren
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Rob J de Haan
- Clinical Research Unit, Academic Medical Center, Amsterdam, the Netherlands
| | - Inger N Sierevelt
- Department of Orthopaedic Surgery, Slotervaart Hospital, Amsterdam, the Netherlands
| | - Gino M M J Kerkhoffs
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Rover Krips
- Department of Orthopaedic Surgery, Diaconessenhuis, Leiden, the Netherlands
| | - Duncan E Meuffels
- Department of Orthopaedic Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - C N van Dijk
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Leendert Blankevoort
- Orthopaedic Research Center Amsterdam, Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Yi HG, Kang KS, Hong JM, Jang J, Park MN, Jeong YH, Cho DW. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs. J Biomed Mater Res A 2016; 104:1797-804. [PMID: 26991030 DOI: 10.1002/jbm.a.35714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/18/2016] [Accepted: 03/09/2016] [Indexed: 11/08/2022]
Abstract
In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016.
Collapse
Affiliation(s)
- Hee-Gyeong Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea
| | - Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jung Min Hong
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jinah Jang
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Kyungbuk 37673, Korea
| | - Moon Nyeo Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea
| | - Young Hun Jeong
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.,Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Kyungbuk 37673, Korea
| |
Collapse
|
36
|
Urnukhsaikhan E, Cho H, Mishig-Ochir T, Seo YK, Park JK. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci 2016; 151:130-138. [PMID: 26898125 DOI: 10.1016/j.lfs.2016.02.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Pulsed electromagnetic fields (PEMF) are known to affect biological properties such as differentiation, regulation of transcription factor and cell proliferation. However, the cell-protective effect of PEMF exposure is largely unknown. The aim of this study is to understand the mechanisms underlying PEMF-mediated suppression of apoptosis and promotion of survival, including PEMF-induced neuronal differentiation. Treatment of induced human BM-MSCs with PEMF increased the expression of neural markers such as NF-L, NeuroD1 and Tau. Moreover, treatment of induced human BM-MSCs with PEMF greatly decreased cell death in a dose- and time-dependent manner. There is evidence that Akt and Ras are involved in neuronal survival and protection. Activation of Akt and Ras results in the regulation of survival proteins such as Bad and Bcl-xL. Thus, the Akt/Ras signaling pathway may be a desirable target for enhancing cell survival and treatment of neurological disease. Our analyses indicated that PEMF exposure dramatically increased the activity of Akt, Rsk, Creb, Erk, Bcl-xL and Bad via phosphorylation. PEMF-dependent cell protection was reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that the PI3K/Akt/Bad signaling pathway may be a possible mechanism for the cell-protective effects of PEMF.
Collapse
Affiliation(s)
| | - Hyunjin Cho
- Dongguk University Research Institute of Biotechnology, Republic of Korea
| | | | - Young-Kwon Seo
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - Jung-Kueg Park
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Effects of PEMF on patients with osteoarthritis: Results of a prospective, placebo-controlled, double-blind study. Bioelectromagnetics 2015; 36:576-85. [DOI: 10.1002/bem.21942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022]
|
38
|
Veronesi F, Fini M, Giavaresi G, Ongaro A, De Mattei M, Pellati A, Setti S, Tschon M. Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; an in vitro study on bovine cartilage. BMC Musculoskelet Disord 2015; 16:308. [PMID: 26480822 PMCID: PMC4616002 DOI: 10.1186/s12891-015-0760-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the final result of progressive alterations to articular cartilage structure, composition and cellularity, followed by an increase in the concentration of pro-inflammatory cytokines in joint synovial fluid. Even though the effect of pulsed electromagnetic field (PEMF) stimulation in counteracting OA progression and inflammation is of increasing interest, because of its anabolic and anti-inflammatory properties, the present study aimed to improve the knowledge on cartilage extracellular matrix (ECM) and chondrocyte changes related to the exposure of PEMF, from a histological and histomorphometric point of view. METHODS An in vitro OA model was realized, culturing bovine cartilage explants with a high dose of interleukin 1β (IL1β, 50 ng/ml) at different experimental times (24 h, and 7 and 21 days). The effects of PEMFs (75 Hz, 1.5 mT) were evaluated in cartilage explants treated with IL1β or not (control), in terms of cartilage structure, cellularity and proteoglycans, glycosaminoglycans, collagen II and transforming growth factor β1 synthesis by using histology, histomorphometry and immunohistochemistry. RESULTS Making a comparison with control cartilage, IL1β-treated explants showed a decrease in cartilage matrix, structure and cellularity parameters. PEMFs were able to counteract the progression of OA acting on both cartilage cellularity and ECM in cartilage previously treated with IL1β. Normal distribution (Kolmogroc-Smirnov test) and homoscedasticity (Levene test) of data were verified, then, the non-parametric Kruskal Wallis test followed by Mann-Whiteny U test for pairwise comparisons were performed. The p-value was adjusted according to the Dunn-Sidak correction. CONCLUSIONS These results, obtained by culturing and treating cartilage explants from two different joints, confirmed that PEMF stimulation can be used as adjuvant therapy to preserve cartilage from detrimental effects of high inflammatory cytokine levels during OA.
Collapse
Affiliation(s)
- Francesca Veronesi
- Department Rizzoli RIT, Rizzoli Orthopedic Institute, Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Bologna, 40136, Italy.
| | - Milena Fini
- Department Rizzoli RIT, Rizzoli Orthopedic Institute, Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Bologna, 40136, Italy. .,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, 40136, Italy.
| | - Gianluca Giavaresi
- Department Rizzoli RIT, Rizzoli Orthopedic Institute, Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Bologna, 40136, Italy. .,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, 40136, Italy.
| | - Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy.
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy.
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy.
| | - Stefania Setti
- IGEA - Clinical Biophysic, Carpi (Modena), 41012, Italy.
| | - Matilde Tschon
- Department Rizzoli RIT, Rizzoli Orthopedic Institute, Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Bologna, 40136, Italy. .,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, 40136, Italy.
| |
Collapse
|
39
|
BEMER Therapy Combined with Physiotherapy in Patients with Musculoskeletal Diseases: A Randomised, Controlled Double Blind Follow-Up Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:245742. [PMID: 26078768 PMCID: PMC4452849 DOI: 10.1155/2015/245742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 11/18/2022]
Abstract
Background. This study evaluates the effect of adjuvant BEMER therapy in patients with knee arthrosis and chronic low back pain in a randomized double blind design. Methods. A total of 50 patients with chronic low back pain and 50 patients with osteoarthritis of knee took part in this study and were randomized into 4 groups. Hospitalized patients received a standardized physiotherapy package for 3 weeks followed by BEMER therapy or placebo. Results. In patients with low back pain, the comparison of the results obtained at the first and second visit showed a significant improvement in resting VAS scores and Fatigue Scale scores. The Oswestry scores and Quality of Life Scale scores showed no change. In patients with knee arthrosis, the comparison of the first and second measurements showed no significant improvement in the abovementioned parameters, while the comparison of the first and third scores revealed a significant improvement in the Fatigue Scale scores and in the vitality test on the Quality of Life Scale. Conclusions. Our study showed that BEMER physical vascular therapy reduced pain and fatigue in the short term in patients with chronic low back pain, while long-term therapy appears to be beneficial in patients with osteoarthritis of knee.
Collapse
|
40
|
Caliskan SG, Bilgin MD, Kozaci LD. Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β. Asian Pac J Cancer Prev 2015; 16:2701-5. [DOI: 10.7314/apjcp.2015.16.7.2701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Brady MA, Waldman SD, Ethier CR. The Application of Multiple Biophysical Cues to Engineer Functional Neocartilage for Treatment of Osteoarthritis. Part I: Cellular Response. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:1-19. [DOI: 10.1089/ten.teb.2013.0757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariea A. Brady
- Department of Bioengineering, Imperial College London, South Kensington, London, United Kingdom
| | | | - C. Ross Ethier
- Department of Bioengineering, Imperial College London, South Kensington, London, United Kingdom
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
43
|
Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study. INTERNATIONAL ORTHOPAEDICS 2015; 39:1289-94. [DOI: 10.1007/s00264-014-2627-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
|
44
|
Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants. INTERNATIONAL ORTHOPAEDICS 2014; 39:549-57. [PMID: 25267432 DOI: 10.1007/s00264-014-2542-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. METHODS Explants of porcine cartilage and human osteoarthritic cartilage were cultured for four weeks and subjected to daily LIPUS or PEMF treatments. At one, two, three and four weeks follow-up explants were prepared for histological assessment or gene expression (porcine only). RESULTS Non-treated porcine explants showed signs of atrophy of the superficial zone starting at one week. Treated explants did not. In LIPUS-treated explants cell clusters were observed. In PEMF-treated explants more hypertrophic-like changes were observed at later follow up. Newly synthesized tissue was present in treated explants. Gene expression profiles did indicate differences between the two methods. Both methods reduced expression of the aggrecan and collagen type II gene compared to the control. LIPUS treatment of human cartilage samples resulted in a reduction of degeneration according to Mankin scoring. PEMF treatment did not. CONCLUSIONS LIPUS or PEMF prevented degenerative changes in pig knee cartilage explants. LIPUS reduced degeneration in human cartilage samples. LIPUS treatment seems to have more potency in the treatment of osteoarthritis than PEMF treatment.
Collapse
|
45
|
Ongaro A, Pellati A, Bagheri L, Fortini C, Setti S, De Mattei M. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 2014; 35:426-36. [PMID: 25099126 DOI: 10.1002/bem.21862] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Veronesi F, Torricelli P, Giavaresi G, Sartori M, Cavani F, Setti S, Cadossi M, Ongaro A, Fini M. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res 2014; 32:677-85. [PMID: 24501089 DOI: 10.1002/jor.22584] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 01/06/2014] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a joint pathology characterized by fibrillation, reduced cartilage thickness and subchondral bone sclerosis. There is evidence that pulsed electromagnetic fields (PEMFs) counteract OA progression, but the effect of two different PEMF frequencies has not yet been shown. The aim of this study was to test the effectiveness of PEMFs at two different frequencies (37 and 75 Hz) in a late OA stage in 21-month-old Guinea pigs. After 3 months of 6 h/day PEMF stimulation, histological and histomorphometric analyses of the knees were performed. At both frequencies, PEMFs significantly reduced histological cartilage score, fibrillation index (FI), subchondral bone thickness (SBT) and trabecular number (Tb.N) and increased trabecular thickness (Tb.Th) and separation (Tb.Sp) in comparison to the not treated SHAM group. However, PEMFs at 75 Hz produced significantly more beneficial effects on the histological score and FI than 37 Hz PEMFs. At 75 Hz, PEMFs counteracted cartilage thinning as demonstrated by a significantly higher cartilage thickness values than either those of the SHAM or 37 Hz PEMF-treated groups. Although in severe OA both PEMF frequencies were able to limit its progression, 75 Hz PEMF stimulation achieved the better results.
Collapse
Affiliation(s)
- F Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute-IOR, via Di Barbiano 1/10, 40136, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gobbi A, Lad D, Petrera M, Karnatzikos G. Symptomatic Early Osteoarthritis of the Knee Treated With Pulsed Electromagnetic Fields: Two-Year Follow-up. Cartilage 2014; 5:78-85. [PMID: 26069687 PMCID: PMC4297082 DOI: 10.1177/1947603513515904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In vitro and in vivo studies have proven a pro-anabolic and anti-catabolic activity within cartilage with the use of pulsed electromagnetic fields (PEMFs). This has piqued interest of sports physicians for its use in the treatment of early osteoarthritis (OA). The aim was to determine if the use of PEMFs in patients with early OA of the knee would lead to an improved clinical outcome. STUDY DESIGN Prospective case series. METHODS Twenty-two patients aged between 30 and 60 years who underwent treatment with PEMFs (4-hour treatment per day, duration 45 days) were included. All patients presented with symptomatic early OA with grade 0-2 changes (Kellgren-Lawrence classification) at the pretreatment evaluation. Patients were evaluated before treatment, at 1- and 2-year follow-up using visual analogue scale for pain, International Knee Documentation Committee objective, Tegner, and Knee Injury and Osteoarthritis Outcome Scores. RESULTS A significant improvement in all scores was observed at 1-year follow-up (P = 0.008). At 2-year follow-up, results deteriorated but were still superior to pretreatment levels (P = 0.02). No adverse reactions or side effects were seen. CONCLUSIONS This study showed that the use of PEMFs in patients with symptomatic early OA of the knee led to significant improvement in symptoms, knee function, and activity at 1-year follow-up. There was a significant decline in all the scores at 2-year follow-up.
Collapse
|
48
|
Santo VE, Rodrigues MT, Gomes ME. Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Rev Mol Diagn 2014; 13:553-66. [DOI: 10.1586/14737159.2013.819169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Cebrián JL, Milano GL, Francés A, Lopiz Y, Marco F, López-Durán L. Role of Electromagnetic Stimulation in the Treatment of Osteonecrosis of the Femoral Head in Early Stages. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.75028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. INTERNATIONAL ORTHOPAEDICS 2013; 38:397-403. [PMID: 24352823 PMCID: PMC3923943 DOI: 10.1007/s00264-013-2216-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/16/2013] [Indexed: 01/15/2023]
Abstract
Purpose It has been reported that even one year after total knee arthroplasty (TKA), a relevant percentage of patients does not attain complete recovery and indicate unfavourable long-term pain outcome. We compared the clinical outcome of 33 patients undergoing TKA randomly assigned to the control or the pulsed electromagnetic field group (I-ONE therapy). Methods I-ONE therapy was administered postoperatively four hours per day for 60 days. Patients were assessed before surgery and then at one, two and six months postoperatively using international scores. Results One month after TKA, pain, knee swelling and functional score were significantly better in the treated compared with the control group. Pain was still significantly lower in the treated group at the six month follow-up. Three years after surgery, severe pain and occasional walking limitations were reported in a significantly lower number of patients in the treated group. Conclusions Advantages deriving from early control of joint inflammation may explain the maintenance of results at follow-up. I-ONE therapy should be considered an effective completion of the TKA procedure.
Collapse
|