1
|
Sincak M, Adamkova P, Demeckova V, Smelko M, Lipovsky P, Oravec M, Luptakova A, Sedlakova-Kadukova J. Critical role of model organism selection in assessing weak urban electromagnetic field effects: Implications for human health. Bioelectrochemistry 2024; 160:108756. [PMID: 38959750 DOI: 10.1016/j.bioelechem.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
The impact of electromagnetic fields on human health has been investigated in recent years using various model organisms, yet the findings remain unclear. In our work, we examined the effect of less-explored, weak electromagnetic fields commonly found in the urban environments we inhabit. We studied different impacts of electromagnetic fields with a frequency of 50 Hz and a combination of 50 Hz and 150 Hz, on both yeasts (Saccharomyces cerevisiae) and human macrophages. We determined growth, survival, and protein composition (SDS-PAGE) (Saccharomyces cerevisiae) and morphology of macrophages (human monocytic cell line). In yeast, the sole observed change after 24 h of exposure was the extension of the exponential growth phase by 17 h. Conversely, macrophages exhibited morphological transformations from the anti-inflammatory to the pro-inflammatory type within just 2 h of exposure to the electromagnetic field. Our results suggest that effects of electromagnetic field largely depend on the model organism. The selection of an appropriate model organism proves essential for the study of the specific impacts of electromagnetic fields. The potential risk associated with the presence of pro-inflammatory M1 macrophages in everyday urban environments primarily arises from the continual promotion of inflammatory reactions within a healthy organism and deserves further investigation.
Collapse
Affiliation(s)
- Miroslava Sincak
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, Ss. Cyril and Methodius University in Trnava, Nám. J. Herdu 2, Trnava, 917 01, Slovakia
| | - Petra Adamkova
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54, Kosice, Slovakia
| | - Vlasta Demeckova
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54, Kosice, Slovakia
| | - Miroslav Smelko
- Faculty of Aeronautics,Technical University of Košice, Letna 9, Košice. 042 00, Slovakia
| | - Pavol Lipovsky
- Faculty of Aeronautics,Technical University of Košice, Letna 9, Košice. 042 00, Slovakia
| | - Milan Oravec
- Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, Košice. 042 00, Slovakia
| | - Alena Luptakova
- Slovak Academy of Sciences, Institute of Geotechnics, Watsonova 45, 04001 Kosice, Slovakia
| | - Jana Sedlakova-Kadukova
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, Ss. Cyril and Methodius University in Trnava, Nám. J. Herdu 2, Trnava, 917 01, Slovakia; ALGAJAS s.r.o., Pražská 16, 04011 Košice, Slovakia.
| |
Collapse
|
2
|
Mercado-Sáenz S, González-Vidal A, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Pulsed magnetic field increases the effect of ultraviolet C radiation and thermal shock in aged yeasts. Int Microbiol 2023; 26:951-959. [PMID: 36997813 PMCID: PMC10622344 DOI: 10.1007/s10123-023-00352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/02/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The study of the effects of the magnetic field (MF) on living matter continues to be a dilemma. Until now, the interaction mechanisms of MF with living matter that explain the observed phenomena are unknown. Despite the existing literature and the multiple effects described to date, there are few published articles that study the combined effect of MF with other physical agents during the cellular aging process. In this sense, the aim of this work is to study whether low frequency and intensity pulsed and sinusoidal MF exposure produce alterations in the cell killing effect of ultraviolet C (UVC) radiation and thermal shock during the chronological aging of S. cerevisiae. Yeast cells were exposed to 2.45 mT (50 Hz) sinusoidal MF and 1.5 mT (25 Hz) pulsed MF, during 40 days of aging, in combination with UVC radiation (50 J/m2) and/or thermal shock (52°C). Cell survival was evaluated by clonogenic assay. The exposure of yeast to pulsed MF produces an acceleration of aging, which is not observed in cells exposed to sinusoidal MF. The pulsed MF modifies the cellular response to damaging agents only in aged S. cerevisiae cells. In this sense, the pulsed MF applied increases the damage induced by UVC radiation and by thermal shock. In contrast, the sinusoidal MF used has no effect.
Collapse
Affiliation(s)
- Silvia Mercado-Sáenz
- Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur, 32, 29010, Málaga, Spain
| | - Alejandro González-Vidal
- Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur, 32, 29010, Málaga, Spain
| | - Antonio M Burgos-Molina
- Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur, 32, 29010, Málaga, Spain
| | - Beatriz López-Díaz
- Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur, 32, 29010, Málaga, Spain
| | - Francisco Sendra-Portero
- Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur, 32, 29010, Málaga, Spain
| | - Miguel J Ruiz-Gómez
- Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur, 32, 29010, Málaga, Spain.
| |
Collapse
|
3
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
4
|
Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc Biol Sci 2019; 285:rspb.2018.0590. [PMID: 29794049 DOI: 10.1098/rspb.2018.0590] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Extremely low-frequency (ELF) magnetic fields have been classified as possibly carcinogenic, mainly based on rather consistent epidemiological findings suggesting a link between childhood leukaemia and 50-60 Hz magnetic fields from power lines. However, causality is not the only possible explanation for the epidemiological associations, as animal and in vitro experiments have provided only limited support for carcinogenic effects of ELF magnetic fields. Importantly, there is no generally accepted biophysical mechanism that could explain such effects. In this review, we discuss the possibility that carcinogenic effects are based on the radical pair mechanism (RPM), which seems to be involved in magnetoreception in birds and certain other animals, allowing navigation in the geomagnetic field. We review the current understanding of the RPM in magnetoreception, and discuss cryptochromes as the putative magnetosensitive molecules and their possible links to cancer-relevant biological processes. We then propose a hypothesis for explaining the link between ELF fields and childhood leukaemia, discuss the strengths and weaknesses of the current evidence, and make proposals for further research.
Collapse
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Mizuno K, Narita E, Yamada M, Shinohara N, Miyakoshi J. ELF magnetic fields do not affect cell survival and DNA damage induced by ultraviolet B. Bioelectromagnetics 2013; 35:108-15. [PMID: 24123106 DOI: 10.1002/bem.21821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/12/2013] [Indexed: 11/07/2022]
Abstract
We investigated whether extremely low frequency (ELF) magnetic field exposure has modification effects on cell survival after ultraviolet B (UV-B) irradiation and on repair process of DNA damage induced by UV-B irradiation in WI38VA13 subcloned 2RA and XP2OS(SV) cells. The ELF magnetic field exposure was conducted using a Helmholtz coil-based system that was designed to generate a sinusoidal magnetic field at 5 mT and 60 Hz. Cell survival was assessed by WST assay after UV-B irradiation at 20-80 J/m(2) , ELF magnetic field exposure for 24 h, followed by incubation for 48 h. DNA damage was assessed by quantification of cyclobutane pyrimidine dimer formation and 6-4 photoproduct formation using ELISA after UV-B irradiation at 20-80 J/m(2) followed by ELF magnetic field exposure for 24 h. No significant changes were observed in cell survival between ELF magnetic field and sham exposures. Similarly, DNA damage induced by UV-B irradiation did not change significantly following ELF magnetic field exposure. Our results suggest that ELF magnetic field exposure at 5 mT does not have modification effect on cell survival after UV-B irradiation and on repair process of DNA damage induced by UV-B irradiation.
Collapse
Affiliation(s)
- Kohei Mizuno
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan; Power Engineering R&D Center, Kansai Electric Power Company, Osaka, Japan
| | | | | | | | | |
Collapse
|
6
|
Makarov VI. Reduction of laser-induced retinal injury applying the combination of the 3D variable electric and magnetic fields in "vivo". Electromagn Biol Med 2013; 33:103-17. [PMID: 23781999 DOI: 10.3109/15368378.2013.784980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oscillating Low Frequency Electro-Magnetic Fields action on eye retina restoration in Rattus Norvegicus was studied in the present work. A beneficial effect of 3-Dimention Oscillating Low Frequency Electro-Magnetic Field was found for the specific values of Electro-Magnetic Field parameters. We found that eye retina damaged by radiation of the fundamental frequency harmonic of a YAG laser has recovered earlier and rehabilitated to the original 3D-state in the presence of OLFEMF, with the parameters listed below in the text. The results obtained were explained by the action of oscillating sub-macro-motions in the cells upon the metabolic processes in these cells.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Physics, University of Puerto Rico , Rio Piedras, San Juan , Puerto Rico
| |
Collapse
|
7
|
López-Díaz B, Mercado-Sáenz S, Martínez-Morillo M, Sendra-Portero F, Ruiz-Gómez MJ. Long-term exposure to a pulsed magnetic field (1.5 mT, 25 Hz) increases genomic DNA spontaneous degradation. Electromagn Biol Med 2013; 33:228-35. [DOI: 10.3109/15368378.2013.802245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Beatriz López-Díaz
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Silvia Mercado-Sáenz
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Manuel Martínez-Morillo
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Francisco Sendra-Portero
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Miguel J. Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| |
Collapse
|
8
|
Bayraktar VN. MAGNETIC FIELD EFFECT ON YEAST Saccharomyces cerevisiae ACTIVITY AT GRAPE MUST FERMENTATION. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.01.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Makarov VI, Khmelinskii I. FTIR and UV spectroscopy in real-time monitoring of S. cerevisiae cell culture. Electromagn Biol Med 2011; 30:181-97. [PMID: 22047457 DOI: 10.3109/15368378.2011.587927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A combination of FTIR and UV spectroscopy is proposed as a novel technique for integrated real-time monitoring of metabolic activity and growth rates of cell cultures, required for systematic studies of cellular low-frequency (LF) electric and magnetic field (EMF) effects. As an example, we investigated simultaneous influence of periodic LF 3D EMFs on a culture of Saccharomyces cerevisiae (baker's yeast) cells. Amplitudes, frequencies and phases of the field components were the variable parameters. Electromagnetic fields were found to efficiently control the activity of the yeast cells, with the resulting CO(2) production rates, as monitored by FTIR spectroscopy, varying by at least one order of magnitude due to the field action. Additionally, population dynamics of the yeast cells was monitored by UV absorption of the yeast culture at λ(prob) = 320 nm, and compared to the CO(2) production rates. The detected physiologically active frequencies are all below 1 kHz, namely, 800 Hz excitation was effective in reducing the metabolic rates and arresting cell proliferation, whereas 200 Hz excitation was active in accelerating both cell proliferation and overall metabolic rates. The proposed methods produce objective, reliable and quantitative real-time results within minutes and may be used in various tasks that could benefit from a rapid feedback they provide in the form of metabolic and growth rates. Amplitude and frequency dependences of the LF EMF effects from individual field components with different polarizations were recorded and qualitatively interpreted based on a simple model, describing ion diffusion through a membrane channel.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | |
Collapse
|
10
|
Ruiz-Gómez MJ, Ristori-Bogajo E, Prieto-Barcia MI, Martínez-Morillo M. No Evidence of Cellular Alterations by MilliTesla-Level Static and 50 Hz Magnetic Fields onS. cerevisiae. Electromagn Biol Med 2010; 29:154-64. [DOI: 10.3109/07435800.2010.505158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Li J, Hirota K, Yumoto H, Matsuo T, Miyake Y, Ichikawa T. Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms. J Appl Microbiol 2010; 109:2183-90. [DOI: 10.1111/j.1365-2672.2010.04850.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Severini M, Bosco L, Alilla R, Loy M, Bonori M, Giuliani L, Bedini A, Giliberti C, Palomba R, Pesolillo S, Giacomozzi E, Castellano AC. Metamorphosis delay inXenopus laevis(Daudin) tadpoles exposed to a 50 Hz weak magnetic field. Int J Radiat Biol 2010; 86:37-46. [DOI: 10.3109/09553000903137687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Markkanen A, Naarala J, Juutilainen J. A Study on the effects of 50 Hz magnetic fields on UV-induced radical reactions in murine fibroblasts. JOURNAL OF RADIATION RESEARCH 2010; 51:609-613. [PMID: 20921828 DOI: 10.1269/jrr.10038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aim of this study was to test the hypothesis that the "radical pair mechanism" (magnetic field effect on recombination rate of radical pairs) explains our previous findings indicating that 50 Hz magnetic fields (MF) of about 100 µT modify biological responses to ultraviolet (UV) radiation. In the present study, the effects of 50 Hz MF on cellular oxidative processes induced by UV radiation were investigated. Murine L929 fibroblast cells were exposed to 50 Hz MF of 100 or 300 µT during a 1-h UV exposure or for 24 h before it. The decay kinetics of oxidative reactions were analysed by measuring ultraweak chemiluminescence (photon emissions) of the exposed cells by scintillation counter in the out-of-coincidence mode. No significant MF effects were found. The results do not support the hypothesis that 100-300 µT MF modify biological responses to UV radiation by causing an overall change in oxidative reactions at cellular level.
Collapse
Affiliation(s)
- Ari Markkanen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
14
|
Markkanen A, Juutilainen J, Naarala J. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells. Int J Radiat Biol 2009; 84:742-51. [DOI: 10.1080/09553000802360836] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Juutilainen J, Kumlin T, Naarala J. Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. Int J Radiat Biol 2009; 82:1-12. [PMID: 16546898 DOI: 10.1080/09553000600577839] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE This paper is a meta-analysis of data from in vitro studies and short-term animal studies that have combined extremely low frequency magnetic fields with known carcinogens or other toxic physical or chemical agents. MATERIALS AND METHODS The data was analyzed by systematic comparison of study characteristics between positive and negative studies to reveal possible consistent patterns. RESULTS The majority of the studies reviewed were positive, suggesting that magnetic fields do interact with other chemical and physical exposures. Publication bias is unlikely to explain the findings. Interestingly, a nonlinear 'dose-response' was found, showing a minimum percentage of positive studies at fields between 1 and 3 mT. The radical pair mechanism (magnetic field effects on recombination of radical pairs) is a good candidate mechanism for explaining the biphasic dose-response seen in the present analysis. CONCLUSIONS Most of the studies reviewed used magnetic fields of 100 microT or higher, so the findings are not directly relevant for explaining the epidemiological findings suggesting increased risk of childhood leukemia above 0.4 microT. However, confirmed adverse effects even at 100 microT would have implications for risk assessment and management, including the need to reconsider the exposure limits for magnetic fields. There is an obvious need for further studies on combined effects with magnetic fields.
Collapse
Affiliation(s)
- Jukka Juutilainen
- University of Kuopio, Department of Environmental Sciences, Kuopio, Finland.
| | | | | |
Collapse
|
16
|
Takashima Y, Ikehata M, Miyakoshi J, Koana T. Inhibition of UV‐induced G1 arrest by exposure to 50 Hz magnetic fields in repair‐proficient and ‐deficient yeast strains. Int J Radiat Biol 2009; 79:919-24. [PMID: 14698960 DOI: 10.1080/09553000310001621437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess the possibility that extremely low frequency (ELF) magnetic fields obstruct the damage repair process, the gene conversion frequency and cell cycle kinetics in a DNA repair-proficient and nucleotide excision repair (NER)-deficient strain of diploid yeast Saccharomyces cerevisiae. MATERIALS AND METHODS DNA repair- or NER-deficient cells were irradiated with sublethal doses of ultraviolet light (UV) radiation followed by exposure to 50 Hz magnetic fields up to 30 mT for 48 h. After exposure, colony-forming ability was scored as revertants in which gene conversion had restored the functional allele of the ARG4 gene conversion hotspot. Cell cycle analysis was performed using flow cytometry. RESULTS Gene conversion rate was increased by the combined exposure in DNA repair-proficient cells, whereas it remained unchanged between UV alone and the combined exposure in NER-deficient cells. The UV-induced G1 arrest was inhibited by exposure to 30 mT ELF magnetic fields in both repair-proficient and -deficient cells. CONCLUSIONS The results suggest that exposure to high-density (30 mT) ELF magnetic fields decreases the efficiency of NER by suppressing G1 arrest, which in turn led to enhancement of the UV-induced gene conversion.
Collapse
Affiliation(s)
- Y Takashima
- Biotechnology Laboratory Railway Technical Research Institute, Hikaricho 2-8-38 Kokubunji, Tokyo 185-8540, Japan
| | | | | | | |
Collapse
|
17
|
Juutilainen J. Do electromagnetic fields enhance the effects of environmental carcinogens? RADIATION PROTECTION DOSIMETRY 2008; 132:228-231. [PMID: 18977776 DOI: 10.1093/rpd/ncn258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Epidemiological studies have reported an increased risk of leukaemia in children who are exposed to extremely low-frequency (ELF) magnetic fields (MF), suggesting that ELF MFs may be carcinogenic to humans. No carcinogenic effects have been found in animal studies that have tested ELF MFs alone. Similarly, genotoxicity studies have generally not shown effects from MFs alone. However, ELF MFs have been reported to enhance the effects of known carcinogenic or mutagenic agents in a few animal studies and in several in vitro studies. This paper discusses the findings of studies on such combined effects. The majority of in vitro studies have reported positive findings, which supports the conclusion that MFs of 100 microT or higher interact with other chemical and physical agents. Further studies should address biophysical mechanisms and dose-response relationship below 100 microT. Animal studies designed according to the classical initiation-promotion concept may not be sufficient for studying the cocarcinogenic effects of MFs, and further studies using novel study designs would be useful. Epidemiological data on the interaction between MFs and other environmental agents are scant and inconclusive, and any further studies may be difficult because of the scarcity of subjects with suitable combined exposures.
Collapse
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental Science, University of Kuopio, PO Box 1627, 70211 Kuopio, Finland. jukka.juutilainen@uku. fi
| |
Collapse
|
18
|
Abstract
AbstractThe ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms. Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable magnetobiological effects are as yet completely understood in terms of their underlying physical principles. Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological experimentation. This review places major emphasis on theories, and magnetobiological effects that occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level, a fact that is partly due to a lack of model organisms and model responses; and in great part also to the circumstance that the biological community at large takes little notice of the field, and in particular of the available physical theories. We review the known magnetobiological effects for bacteria, protists and fungi, and try to show how the variegated empirical material could be approached in the framework of the available physical models.
Collapse
|
19
|
Volpe P, Eremenko T. Mechanisms of the target response to magnetic fields and their correlation with the biological complexity. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s10669-007-9085-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Abstract
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by power lines and electric devices) and 872 MHz or 900 MHz RFs (emitted by mobile phones and their base stations) on cellular ornithine decarboxylase activity, cell cycle kinetics, cell proliferation, and necrotic or apoptotic cell death. For RFs, pulse-modulated (217 Hz modulation frequency corresponding a global system for mobile communication-type signal) or continuous wave (unmodulated) signals were used. To expose the cell cultures to MFs or RFs, specially developed exposure systems were used, where levels of electromagnetic field exposure and the conditions of cell culture could be precisely controlled. A coexposure approach was used in many studies, i.e. the cell cultures were exposed to other stressors in addition to MFs or RFs. Ultraviolet radiation, serum deprivation, or fresh medium addition, were used as co-exposures. The results presented in this short review show that the effects of mere MFs or RF on cell culture models are quite minor, but that various co-exposure approaches warrant additional study.
Collapse
Affiliation(s)
- Jonne Naarala
- Department of Environmental Sciences, University of Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
21
|
Markkanen A, Penttinen P, Naarala J, Pelkonen J, Sihvonen AP, Juutilainen J. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells. Bioelectromagnetics 2004; 25:127-33. [PMID: 14735563 DOI: 10.1002/bem.10167] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to investigate whether radiofrequency (RF) electromagnetic field (EMF) exposure affects cell death processes of yeast cells. Saccharomyces cerevisiae yeast cells of the strains KFy417 (wild-type) and KFy437 (cdc48-mutant) were exposed to 900 or 872 MHz RF fields, with or without exposure to ultraviolet (UV) radiation, and incubated simultaneously with elevated temperature (+37 degrees C) to induce apoptosis in the cdc48-mutated strain. The RF exposure was carried out in a special waveguide exposure chamber where the temperature of the cell cultures can be precisely controlled. Apoptosis was analyzed using the annexin V-FITC method utilizing flow cytometry. Amplitude modulated (217 pulses per second) RF exposure significantly enhanced UV induced apoptosis in cdc48-mutated cells, but no effect was observed in cells exposed to unmodulated fields at identical time-average specfic absorption rates (SAR, 0.4 or 3.0 W/kg). The findings suggest that amplitude modulated RF fields, together with known damaging agents, can affect the cell death process in mutated yeast cells. Bioelectromagnetics 25:127-133, 2004.
Collapse
Affiliation(s)
- Ari Markkanen
- Department of Environmental Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
22
|
Volpe P. Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2003; 2:637-48. [PMID: 12859147 DOI: 10.1039/b212636b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review points to the investigations concerning the effects of zero-frequency (DC) and oscillating (AC) magnetic fields (MFs) on living matter, and especially those exerted by weak DC and low-frequency/low-intensity AC MFs. Starting from the analysis of observations on the action of natural magnetic storms (MSs) or periodic geomagnetic field (GMF) variations on bacteria, plants and animals, which led to an increasing interest in MFs in general, this survey pays particular attention to the background knowledge regarding the action of artificial MFs not only at the ionic, molecular or macromolecular levels, but also at the levels of subcellular regions, in vitro cycling cells, in situ functioning tissues or organs and total bodies or entire populations. The significance of some crucial findings concerning, for instance, the MF-dependence of the nuclear or cellular volumes, rate of cell proliferation vs. that of cell death, extent of necrosis vs. that of apoptosis and cell membrane fluidity, is judged by comparing the results obtained in a solenoid (SLD), where an MF can be added to a GMF, with those obtained in a magnetically shielded room (MSR), where the MFs can be partially attenuated or null. This comparative criterion is required because the differences detected in the behaviour of the experimental samples against that of the controls are rather small per se and also because the evaluation of the data often depends upon the peculiarity of the methodologies used. Therefore, only very small differences are observed in estimating the MF-dependence of the expression of a single gene or of the rates of total DNA replication, RNA transcription and protein translation. The review considers the MF-dependence of the interactions between host eukaryotic cells and infecting bacteria, while documentation of the harmful effects of the MFs on specific life processes is reported; cases of favourable action of the MFs on a number of biological functions are also evidenced. In the framework of studies on the origin and adaptation of life on Earth or in the Universe, theoretical insights paving the way to elucidate the mechanisms of the MF interactions with biostructures and biosystems are considered.
Collapse
Affiliation(s)
- Pietro Volpe
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
23
|
Current awareness on yeast. Yeast 2001; 18:1357-64. [PMID: 11571760 DOI: 10.1002/yea.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|