1
|
Renaudin X, Al Ahmad Nachar B, Mancini B, Gueiderikh A, Louis-Joseph N, Maczkowiak-Chartois F, Rosselli F. Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia. PLoS Genet 2024; 20:e1011474. [PMID: 39509458 PMCID: PMC11575784 DOI: 10.1371/journal.pgen.1011474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Abnormal expression of the cell cycle inhibitor and p53 target CDKN1A/p21 has been associated with paradoxical outcomes, such as hyperproliferation in p53-deficient cancer cells or hypoproliferation that affects hematopoietic stem cell behavior, leading to bone marrow failure (BMF). Notably, p21 is known to be overexpressed in Fanconi anemia (FA), which is a rare syndrome that predisposes patients to BMF and cancer. However, why p21 is overexpressed in FA and how it contributes to the FA phenotype(s) are still poorly understood. Here, we revealed that while the upregulation of p21 is largely dependent on p53, it also depends on the transcription factor microphthalmia (MITF) as well as on its interaction with the nucleolar protein NPM1. Upregulation of p21 expression in FA cells leads to p21 accumulation in the chromatin fraction, p21 immunoprecipitation with PCNA, S-phase lengthening and genetic instability. p21 depletion in FA cells rescues the S-phase abnormalities and reduces their genetic instability. In addition, we observed that reactive oxygen species (ROS) accumulation, another key feature of FA cells, is required to trigger an increase in PCNA/chromatin-associated p21 and to impact replication progression. Therefore, we propose a mechanism by which p21 and ROS cooperate to induce replication abnormalities that fuel genetic instability.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Baraah Al Ahmad Nachar
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Benedetta Mancini
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Anna Gueiderikh
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Noémie Louis-Joseph
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Frédérique Maczkowiak-Chartois
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| |
Collapse
|
2
|
Rozelle AL, Lee S. Genotoxic C8-Arylamino-2'-deoxyadenosines Act as Latent Alkylating Agents to Induce DNA Interstrand Cross-Links. J Am Chem Soc 2021; 143:18960-18976. [PMID: 34726902 DOI: 10.1021/jacs.1c07234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA interstrand cross-links (ICLs) are extremely deleterious and structurally diverse, driving the evolution of ICL repair pathways. Discovering ICL-inducing agents is, thus, crucial for the characterization of ICL repair pathways and Fanconi anemia, a genetic disease caused by mutations in ICL repair genes. Although several studies point to oxidative stress as a cause of ICLs, oxidative stress-induced cross-linking events remain poorly characterized. Also, polycyclic aromatic amines, potent environmental carcinogens, have been implicated in producing ICLs, but their identities and sequences are unknown. To close this knowledge gap, we tested whether ICLs arise by the oxidation of 8-arylamino-2'-deoxyadenosine (ArNHdA) lesions, adducts produced by arylamino carcinogens. Herein, we report that ArNHdA acts as a latent cross-linking agent to generate ICLs under oxidative conditions. The formation of an ICL from 8-aminoadenine, but not from 8-aminoguanine, highlights the specificity of 8-aminopurine-mediated ICL production. Under the influence of the reactive oxygen species (ROS) nitrosoperoxycarbonate, ArNHdA (Ar = biphenyl, fluorenyl) lesions were selectively oxidized to generate ICLs. The cross-linking reaction may occur between the C2-ArNHdA and N2-dG, presumably via oxidation of ArNHdA into a reactive diiminoadenine intermediate followed by the nucleophilic attack of the N2-dG on the diiminoadenine. Overall, ArNHdA-mediated ICLs represent rare examples of ROS-induced ICLs and polycyclic aromatic amine-mediated ICLs. These results reveal novel cross-linking chemistry and the genotoxic effects of arylamino carcinogens and support the hypothesis that C8-modified adenines with low redox potential can cause ICLs in oxidative stress.
Collapse
Affiliation(s)
- Aaron L Rozelle
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
4
|
Rozelle AL, Cheun Y, Vilas CK, Koag MC, Lee S. DNA interstrand cross-links induced by the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nat Commun 2021; 12:1897. [PMID: 33772030 PMCID: PMC7997976 DOI: 10.1038/s41467-021-22273-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative damage to DNA generates 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major lesions. Despite the comparable prevalence of these lesions, the biological effects of oxoA remain poorly characterized. Here we report the discovery of a class of DNA interstrand cross-links (ICLs) involving oxidized nucleobases. Under oxidative conditions, oxoA, but not oxoG, readily reacts with an opposite base to produce ICLs, highlighting a latent alkylating nature of oxoA. Reactive halogen species, one-electron oxidants, and the myeloperoxidase/H2O2/Cl− system induce oxoA ICLs, suggesting that oxoA-mediated cross-links may arise endogenously. Nucleobase analog studies suggest C2-oxoA is covalently linked to N2-guanine and N3-adenine for the oxoA-G and oxoA-A ICLs, respectively. The oxoA ICLs presumably form via the oxidative activation of oxoA followed by the nucleophilic attack by an opposite base. Our findings provide insights into oxoA-mediated mutagenesis and contribute towards investigations of oxidative stress-induced ICLs and oxoA-based latent alkylating agents. 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine (oxoA) are generated upon oxidative damage to DNA, but the biological effects of oxoA are not well known. Here, the authors report that only oxoA forms DNA interstrand crosslinks (ICLs) upon secondary oxidation and that these ICLs can be induced by reactive halogen species, one-electron oxidants and the myeloperoxidase/H2O2/Cl- system.
Collapse
Affiliation(s)
- Aaron L Rozelle
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Young Cheun
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Caroline K Vilas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Pagano G, Tiano L, Pallardó FV, Lyakhovich A, Mukhopadhyay SS, Di Bartolomeo P, Zatterale A, Trifuoggi M. Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management. Redox Biol 2021; 40:101860. [PMID: 33445068 PMCID: PMC7806517 DOI: 10.1016/j.redox.2021.101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients’ cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mitochondrial dysfunction. The fact that FA proteins are encoded by nuclear, not mitochondrial DNA does not prevent these proteins to hamper mitochondrial function, as it is recognized that most mitochondrial proteins are of nuclear origin. This body of evidence supporting a central role of mitochondrial dysfunction, along with redox imbalance in FA, should lead to the re-definition of FA as a mitochondrial disease. A body of literature has demonstrated the beneficial effects of mitochondrial cofactors, such as α-lipoic acid, coenzyme Q10, and carnitine on patients affected by mitochondrial diseases. Altogether, this re-definition of FA as a mitochondrial disease and the prospect use of mitochondrial nutrients may open new gateways toward mitoprotective strategies for FA patients. These strategies are expected to mitigate the mitochondrial dysfunction and prooxidant state in FA patients, and potentially protect transplanted FA patients from post-transplantation malignancies.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60121, Ancona, Italy
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010, Valencia, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | | | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
6
|
Lagundžin D, Hu WF, Law HCH, Krieger KL, Qiao F, Clement EJ, Drincic AT, Nedić O, Naldrett MJ, Alvarez S, Woods NT. Delineating the role of FANCA in glucose-stimulated insulin secretion in β cells through its protein interactome. PLoS One 2019; 14:e0220568. [PMID: 31461451 PMCID: PMC6713327 DOI: 10.1371/journal.pone.0220568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperinsulinemia affects 72% of Fanconi anemia (FA) patients and an additional 25% experience lowered glucose tolerance or frank diabetes. The underlying molecular mechanisms contributing to the dysfunction of FA pancreas β cells is unknown. Therefore, we sought to evaluate the functional role of FANCA, the most commonly mutated gene in FA, in glucose-stimulated insulin secretion (GSIS). This study reveals that FANCA or FANCB knockdown impairs GSIS in human pancreas β cell line EndoC-βH3. To identify potential pathways by which FANCA might regulate GSIS, we employed a proteomics approach to identify FANCA protein interactions in EndoC-βH3 differentially regulated in response to elevated glucose levels. Glucose-dependent changes in the FANCA interaction network were observed, including increased association with other FA family proteins, suggesting an activation of the DNA damage response in response to elevated glucose levels. Reactive oxygen species increase in response to glucose stimulation and are necessary for GSIS in EndoC-βH3 cells. Glucose-induced activation of the DNA damage response was also observed as an increase in the DNA damage foci marker γ-H2AX and dependent upon the presence of reactive oxygen species. These results illuminate the role of FANCA in GSIS and its protein interactions regulated by glucose stimulation that may explain the prevalence of β cell-specific endocrinopathies in FA patients.
Collapse
Affiliation(s)
- Dragana Lagundžin
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Wen-Feng Hu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Henry C. H. Law
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kimiko L. Krieger
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Emalie J. Clement
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Andjela T. Drincic
- Department of Internal Medicine: Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Banatska, Belgrade, Serbia
| | - Michael J. Naldrett
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska–Lincoln, Nebraska, United States of America
| | - Sophie Alvarez
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska–Lincoln, Nebraska, United States of America
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kulanuwat S, Jungtrakoon P, Tangjittipokin W, Yenchitsomanus PT, Plengvidhya N. Fanconi anemia complementation group C protection against oxidative stress‑induced β‑cell apoptosis. Mol Med Rep 2018; 18:2485-2491. [PMID: 29901137 DOI: 10.3892/mmr.2018.9163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) and other glucose metabolism abnormalities are commonly observed in individuals with Fanconi anemia (FA). FA causes an impaired response to DNA damage due to genetic defects in a cluster of genes encoded proteins involved in DNA repair. However, the mechanism by which FA is associated with DM has not been clearly elucidated. Fanconi anemia complementation group C (FANCC) is a component of FA nuclear clusters. Evidence suggests that cytoplasmic FANCC has a role in protection against oxidative stress‑induced apoptosis. As oxidative stress‑mediated β‑cell dysfunction is one of the contributors to DM pathogenesis, the present study aimed to investigate the role of FANCC in pancreatic β‑cell response to oxidative stress. Small interfering RNA‑mediated FANCC suppression caused a loss of protection against oxidative stress‑induced apoptosis, and that overexpression of FANCC reduced this effect in the human 1.1B4 β‑cell line. These findings were confirmed by Annexin V‑FITC/PI staining, caspase 3/7 activity assay, and expression levels of anti‑apoptotic and pro‑apoptotic genes. Insulin and glucokinase mRNA expression were also decreased in FANCC‑depleted 1.1B4 cells. The present study demonstrated the role of FANCC in protection against oxidative stress‑induced β‑cell apoptosis and established another mechanism that associates FANCC deficiency with β‑cell dysfunction. The finding that FANCC overexpression reduced β‑cell apoptosis advances the potential for an alternative approach to the treatment of DM caused by FANCC defects.
Collapse
Affiliation(s)
- Sirikul Kulanuwat
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prapaporn Jungtrakoon
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
8
|
Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet. Nutrients 2017; 9:nu9010064. [PMID: 28098768 PMCID: PMC5295108 DOI: 10.3390/nu9010064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.
Collapse
|
9
|
Erduran E, Bahadir A, Albayrak D, Aliyazicioglu Y, Buyukavci M, Turan I. Positive correlation between insulin resistance and iron overload-induced oxidative stress in patients with fanconi anemia (FA)- and non-FA-related bone marrow failure: The results of a multicenter study. Pediatr Hematol Oncol 2016; 33:13-20. [PMID: 26918367 DOI: 10.3109/08880018.2015.1106626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the relationship between DNA, protein, and lipid oxidations and insulin resistance in patients with Fanconi anemia (FA)- and non-FA-related bone marrow failure. Sixteen patients with FA, 7 non-FA-related aplastic anemia, and 10 controls were included in the study. Fasting blood glucose, simultaneous insulin, hepcidin, ferritin, 8-hydroxy deoxyguanosine (8-OHdG), protein carbonyls, malondialdehyde (MDA), and homeostatic model assessment-insulin resistance (HOMA-IR) were investigated in the patients and controls. Diepoxybutane test-positive (DEB+) patients were diagnosed with FA, whereas DEB-patients were diagnosed as non-FA. 8-OHdG levels in both FA and non-FA patients were significantly higher than those in the controls (P = .001 and P = .005, respectively). Serum ferritin levels were also higher in FA and non-FA patients than in the controls (P = .0001 and P = .005, respectively). Insulin resistance (IR) was significantly higher in FA patients than in non-FA patients and controls (P = .005 and P = .015, respectively). Significant differences were observed between 8-OHdG, ferritin, and MDA levels in patients with or without IR (P = .009, P = .001, and P = .013, respectively). Moderate and strong relations of 44% and 85% were determined between IR and ferritin levels in patients with FA or non-FA (P = .08 and P = .014, respectively). FA and non-FA patients exhibited a tendency to IR. IR was related to ferritin levels, and ferritin levels were also correlated with oxidative stress. These findings suggest that the increased rate of IR in patients with FA and non-FA may derive from increased oxidative stress, which may in turn be due to elevated serum ferritin levels.
Collapse
Affiliation(s)
- Erol Erduran
- a Department of Pediatric Hematology and Oncology, Karadeniz Technical University , Trabzon , Turkey
| | - Aysenur Bahadir
- a Department of Pediatric Hematology and Oncology, Karadeniz Technical University , Trabzon , Turkey
| | - Davut Albayrak
- b Department of Pediatric Hematology, Ondokuz Mayis University , Samsun , Turkey
| | - Yuksel Aliyazicioglu
- c Department of Medical Biochemistry, Karadeniz Technical University , Trabzon , Turkey
| | - Mustafa Buyukavci
- d Department of Pediatric Hematology and Oncology, Ataturk University , Erzurum , Turkey
| | - Ibrahim Turan
- e Department of Genetic and Bioengineering, Gumushane University , Gumushane , Turkey
| |
Collapse
|
10
|
|
11
|
Petryk A, Kanakatti Shankar R, Giri N, Hollenberg AN, Rutter MM, Nathan B, Lodish M, Alter BP, Stratakis CA, Rose SR. Endocrine disorders in Fanconi anemia: recommendations for screening and treatment. J Clin Endocrinol Metab 2015; 100:803-11. [PMID: 25575015 PMCID: PMC4333044 DOI: 10.1210/jc.2014-4357] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Endocrine problems are common in patients with Fanconi anemia (FA). About 80% of children and adults with FA have at least one endocrine abnormality, including short stature, GH deficiency, abnormal glucose or insulin metabolism, dyslipidemia, hypothyroidism, pubertal delay, hypogonadism, or impaired fertility. The goal of this report is to provide an overview of endocrine abnormalities and guidelines for routine screening and treatment to allow early diagnosis and timely intervention. EVIDENCE ACQUISITION This work is based on a comprehensive literature review, including relevant articles published between 1971 and 2014, and proceedings of a Consensus Conference held by the Fanconi Anemia Research Fund in 2013. EVIDENCE SYNTHESIS The panel of experts collected published evidence and discussed its relevance to reflect current information about the endocrine care of children and adults with FA before the Consensus Conference and through subsequent deliberations that led to the consensus. CONCLUSIONS Individuals with FA should be routinely screened for endocrine abnormalities, including evaluation of growth; glucose, insulin, and lipid metabolism; thyroid function; puberty; gonadal function; and bone mineral metabolism. Inclusion of an endocrinologist as part of the multidisciplinary patient care team is key to providing comprehensive care for patients with FA.
Collapse
Affiliation(s)
- Anna Petryk
- Division of Pediatric Endocrinology (A.P., B.N.), University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55454; Department of Pediatrics (R.K.S.), Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia 23229; Clinical Genetics Branch (N.G., B.P.A.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20850; Division of Endocrinology, Diabetes and Metabolism (A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215; Division of Endocrinology (M.M.R., S.R.R.), Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229; Pediatric Endocrinology Inter-Institute Training Program (M.L.), National Institutes of Health, Bethesda, Maryland 20892; and Section on Endocrinology and Genetics (M.L., C.A.S.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Singh S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol 2014; 75:1-15. [PMID: 25143300 DOI: 10.1007/s00280-014-2566-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Glutathione S-transferases (GSTs) family of enzymes is best known for their cytoprotective role and their involvement in the development of anticancer drug resistance. Recently, emergence of non-detoxifying properties of GSTs has provided them with significant biological importance. Addressing the complex interactions of GSTs with regulatory kinases will help in understanding its precise role in tumor pathophysiology and in designing GST-centered anticancer strategies. METHODS We reviewed all published literature addressing the detoxification and regulatory roles of GSTs in the altered biology of cancer and evaluating novel agents targeting GSTs for cancer therapy. RESULTS The role of GSTs, especially glutathione S-transferase P1 isoform in tumoral drug resistance, has been the cause of intense debate. GSTs have been demonstrated to interact with different protein partners and modulate signaling pathways that control cell proliferation, differentiation and apoptosis. These specific functions of GSTs could lead to the development of new therapeutic approaches and to the identification of some interesting candidates for preclinical and clinical development. This review focuses on the crucial role played by GSTs in the development of resistance to anticancer agents and the major findings regarding the different modes of action of GSTs to regulate cell signaling.
Collapse
Affiliation(s)
- Simendra Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Gautam Buddha Nagar, Greater Noida, UP, India,
| |
Collapse
|
13
|
Rose SR, Kim MO, Korbee L, Wilson KA, Ris MD, Eyal O, Sherafat-Kazemzadeh R, Bollepalli S, Harris R, Jeng MR, Williams DA, Smith FO. Oxandrolone for the treatment of bone marrow failure in Fanconi anemia. Pediatr Blood Cancer 2014; 61:11-9. [PMID: 24019220 DOI: 10.1002/pbc.24617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND A majority of Fanconi anemia (FA) patients will experience bone marrow failure (BMF) and androgen therapy (most often oxymetholone) may be utilized as a treatment to improve BMF-related cytopenias. However, oxymetholone is associated with toxicities making identification of other agents of interest. In this study we aimed to evaluate the toxicity profile and hematologic response in patients with FA who are treated with low-dose oxandrolone, a synthetic non-fluorinated anabolic steroid, similar to oxymetholone, with known dosing thresholds for virilization. PROCEDURE A single arm, Phase I/II study was designed to treat patients on low-dose oxandrolone. If no toxicity or hematologic response was noted at 16 weeks, a single dose escalation was offered. Subjects were regularly assessed for toxicity, including determinations of virilization, behavioral changes, and liver and kidney function. At 32 weeks, those who demonstrated hematologic response were allowed to continue study treatment, and those without improvement were deemed non-responsive. RESULTS Nine subjects completed the study and were followed for a median of 99 weeks (46-136 weeks). Three (33.3%) subjects developed mild sub-clinical virilization and continued treatment with a dose reduction. None (0%) had adverse behavioral changes. Two (22.2%) developed elevated liver function tests at 42 and 105 weeks. Seven (77.8%) subjects had a hematologic response. CONCLUSION Oxandrolone appears to be well-tolerated, has limited toxicities at the administered doses in FA with patients, and may be an alternative androgen for the treatment of BMF in FA.
Collapse
Affiliation(s)
- Susan R Rose
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Endocrinology, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim S, Hwang SK, Lee M, Kwak H, Son K, Yang J, Kim SH, Lee CH. Fanconi anemia complementation group A (FANCA) localizes to centrosomes and functions in the maintenance of centrosome integrity. Int J Biochem Cell Biol 2013; 45:1953-61. [PMID: 23806870 DOI: 10.1016/j.biocel.2013.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) proteins are known to play roles in the cellular response to DNA interstrand cross-linking lesions; however, several reports have suggested that FA proteins play additional roles. To elucidate novel functions of FA proteins, we used yeast two-hybrid screening to identify binding partners of the Fanconi anemia complementation group A (FANCA) protein. The candidate proteins included never-in-mitosis-gene A (NIMA)-related kinase 2 (Nek2), which functions in the maintenance of centrosome integrity. The interaction of FANCA and Nek2 was confirmed in human embryonic kidney (HEK) 293T cells. Furthermore, FANCA interacted with γ-tubulin and localized to centrosomes, most notably during the mitotic phase, confirming that FANCA is a centrosomal protein. Knockdown of FANCA increased the frequency of centrosomal abnormalities and enhanced the sensitivity of U2OS osteosarcoma cells to nocodazole, a microtubule-interfering agent. In vitro kinase assays indicated that Nek2 can phosphorylate FANCA at threonine-351 (T351), and analysis with a phospho-specific antibody confirmed that this phosphorylation occurred in response to nocodazole treatment. Furthermore, U2OS cells overexpressing the phosphorylation-defective T351A FANCA mutant showed numerical centrosomal abnormalities, aberrant mitotic arrest, and enhanced nocodazole sensitivity, implying that the Nek2-mediated T351 phosphorylation of FANCA is important for the maintenance of centrosomal integrity. Taken together, this study revealed that FANCA localizes to centrosomes and is required for the maintenance of centrosome integrity, possibly through its phosphorylation at T351 by Nek2.
Collapse
Affiliation(s)
- Sunshin Kim
- New Experimental Therapeutics Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 410-769, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lymphocytes of patients with Alzheimer's disease display different DNA damage repair kinetics and expression profiles of DNA repair and stress response genes. Int J Mol Sci 2013; 14:12380-400. [PMID: 23752274 PMCID: PMC3709791 DOI: 10.3390/ijms140612380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/21/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, characterized by loss of memory and cognitive capacity. Given the limitations to analyze brain cells, it is important to study whether peripheral lymphocytes can provide biological markers for AD, an interesting approach, once they represent the overall condition of the organism. To that extent, we sought to find whether lymphocytes of AD patients present DNA damage and repair kinetics different from those found in elderly matched controls (EC group) under in vitro treatment with hydrogen peroxide. We found that AD patient cells indeed showed an altered DNA repair kinetics (comet assay). Real-time quantitative analysis of genes associated with DNA stress response also showed that FANCG and CDKN1A are upregulated in AD, while MTH1 is downregulated, compared with the control group. In contrast, the expression of ATM, ATR and FEN1 genes does not seem to differ between these groups. Interestingly, TP53 protein expression was increased in AD patients. Therefore, we found that kinetics of the stress response in the DNA were significantly different in AD patients, supporting the hypothesis that repair pathways may be compromised in AD and that peripheral lymphocytes can reveal this condition.
Collapse
|
16
|
Rose SR, Myers KC, Rutter MM, Mueller R, Khoury JC, Mehta PA, Harris RE, Davies SM. Endocrine phenotype of children and adults with Fanconi anemia. Pediatr Blood Cancer 2012; 59:690-6. [PMID: 22294495 DOI: 10.1002/pbc.24095] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/06/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND Features of Fanconi anemia (FA) are well known, including bone marrow failure, congenital anomalies such as radial anomalies, renal and ear anomalies, tracheo-esophageal fistula, imperforate anus, and elevated risk for cancer. We sought to further characterize the endocrine phenotype in children and adults with FA. PROCEDURE Clinically indicated endocrine evaluation data from 120 persons with FA, including 78 children (43 female) and 42 young adults (who had achieved adult height, 19 female), were entered in an institutional review board-approved database. Data were analyzed according to gender, birth weight, FA complementation group, and whether or not the patient had completed linear growth or had undergone hematopoietic cell transplant, using Wilcoxon Rank Sum or Chi-square, as appropriate. RESULTS Overall, 60% of children and 58% of adults with FA had short stature, 68% of children and 30% of adults had glucose intolerance, 61% of children and 37% of adults had mild hypothyroidism, and 40% of adults had evidence of hypogonadism (not possible to fully assess in children). In general, bone mineral density (BMD) was normal in adults, while BMD in children was normal when results were adjusted for bone size/thickness using height age. CONCLUSIONS We have evaluated in detail children and adults with FA for their growth and endocrine function. Overall, 79% of children and adults with FA had one or more endocrine abnormality.
Collapse
Affiliation(s)
- Susan R Rose
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnson LA, Malayappan B, Tretyakova N, Campbell C, MacMillan ML, Wagner JE, Jacobson PA. Formation of cyclophosphamide specific DNA adducts in hematological diseases. Pediatr Blood Cancer 2012; 58:708-14. [PMID: 21793181 PMCID: PMC3204332 DOI: 10.1002/pbc.23254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/02/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Fanconi anemia (FA) patients are hypersensitive to DNA alkylating agents and require lower doses than non-FA patients to minimize serious toxicity. The mechanism by which hypersensitivity occurs is thought to be due to the inability of these individuals to effectively repair drug-induced interstrand DNA-DNA crosslinks. We recently developed a highly sensitive assay for cyclophosphamide specific interstrand DNA-DNA crosslinks (G-NOR-G) and are able to quantify and compare formation of these adducts in the blood of patients. Therefore we sought to determine whether FA patients have higher in vivo exposure to the cyclophosphamide specific interstrand DNA crosslink, G-NOR-G, relative to patients without FA. PROCEDURE Cyclophosphamide interstrand DNA crosslinks were measured with the first dose of cyclophosphamide in FA and non-FA patients receiving a cyclophosphamide based preparative regimen prior to hematopoietic cell transplantation (HCT). FA patients received a lower cyclophosphamide dose than the non-FA patients (5-10 mg/kg/day vs. 50-60 mg/kg/day). RESULTS Despite the lower cyclophosphamide dose and lower plasma concentrations in FA patients, they had G-NOR-G amounts similar to the non-FA patients (area under the curve (AUC)(0-∞) , 99.8 vs. 144.9 G-NOR-G adducts/10(6) nucleotides hour, respectively, P = 0.47). When G-NOR-G AUC was normalized for cyclophosphamide plasma concentrations, FA study subjects produced 15-fold higher adducts than non-FA patients (P = 0.05). CONCLUSIONS FA patients are hypersensitive to DNA alkylating agents possibly as a result of greater formation of cyclophosphamide specific interstrand DNA crosslinks and/or diminished capacity for DNA repair. Identification and quantification of these adducts may be important determinant of cyclophosphamide related toxicity.
Collapse
Affiliation(s)
- L’Aurelle A. Johnson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN,Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN
| | - Bhaskar Malayappan
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Margaret L. MacMillan
- Division of Hematology and Oncology, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Hematology and Oncology, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Savina NV, Smal MP, Kuzhir TD, Egorova TM, Khurs OM, Polityko AD, Goncharova RI. Biomarkers for genome instability in some genetic disorders: a pilot study. Biomarkers 2012; 17:201-8. [DOI: 10.3109/1354750x.2011.651157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Shukla P, Ghosh K, Vundinti BR. Current and emerging therapeutic strategies for Fanconi anemia. THE HUGO JOURNAL 2012. [PMCID: PMC4685155 DOI: 10.1186/1877-6566-6-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Fanconi Anemia (FA) is a rare disorder with incidence of 1in 350,000 births. It is characterized by progressive bone marrow failure leading to death of many patients in their childhood while development of cancer at later stages of life in some. The treatment of FA is still a medical challenge. Current treatments of FA include androgen administration, hematopoietic growth factors administration and hematopoietic stem cell transplantation (HSCT). Clinical gene therapy trials are still ongoing. The partial success of current therapies has renewed interest in the search for new treatments. Generation of patient-specific induced pluripotent stem (iPS) has shown promising results for cell and gene based therapy. Small molecule interventions have been observed to delay tumor onset in FA. Tumors deficient in FA pathway can be treated by profiling of DNA repair pathway through synthetic lethality mechanism. Targeting toll-like receptor 8 (TLR8) dependent TNFα overexpression is yet another upcoming therapeutic approach to treat FA patients. In conclusion, in the present scenario of treatments available for FA, a proper algorithm of treatment decisions must be followed for better management of FA patients and to ensure their increased survival. Innovative therapeutic approaches that can prevent both anemia and cancer should be developed for more effective treatment of FA.
Collapse
|
20
|
Porto B, Sousa R, Malheiro I, Gaspar J, Rueff J, Gonçalves C, Barbot J. Normal red blood cells partially decrease diepoxybutane-induced chromosome breakage in cultured lymphocytes from Fanconi anaemia patients. Cell Prolif 2010; 43:573-8. [PMID: 21039995 DOI: 10.1111/j.1365-2184.2010.00706.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Fanconi anaemia (FA) is a cancer-prone chromosome instability syndrome characterized by hypersensitivity to DNA cross-linking agents, such as diepoxybutane (DEB). Previous studies have shown that normal red blood cells (RBC) can protect cultured lymphocytes against chromosomal breaks induced by DEB. The present study was designed to analyse influence of RBCs from normal individuals on frequency of DEB-induced chromosome breaks in lymphocyte cultures from FA patients. MATERIALS AND METHODS A comparative study was performed between DEB-induced chromosome breaks in cultures of FA lymphocytes with either autologous or heterologous RBCs. A further comparative study was carried out between whole blood cultures from FA patients performed on two occasions, before and 1 week after transfusion of RBCs. RESULTS It was observed that normal RBCs compared to FA RBCs, partially reduced chromosome breaks in cultured FA lymphocytes. A significant reduction in DEB-induced breaks was also observed in FA cultured lymphocytes obtained 1 week after transfusion of RBCs, in comparison to those observed in the same patients before RBC transfusion. CONCLUSIONS This study shows that DEB-induced chromosome instability in FA lymphocytes is partially reduced by normal RBCs. This effect may have some clinical relevance in vivo, whenever FA patients receive a RBC transfusion.
Collapse
Affiliation(s)
- B Porto
- Laboratory of Cytogenetics, ICBAS-Institute of Biomedical Sciences Abel Salazar, UP, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
21
|
Macé-Aimé G, Couvé S, Khassenov B, Rosselli F, Saparbaev MK. The Fanconi anemia pathway promotes DNA glycosylase-dependent excision of interstrand DNA crosslinks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:508-519. [PMID: 20120016 DOI: 10.1002/em.20548] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA interstrand crosslinks (ICLs) and, to a milder extension, to ionizing radiation and oxidative stress. Recently, we reported that human oxidative DNA glycosylase, NEIL1 excises with high efficiency the unhooked crosslinked oligomer within three-stranded DNA repair intermediate induced by photoactivated psoralen exposure. Complete reconstitution of repair of the ICL within a three-stranded DNA structure shows that it is processed in the short-patch base excision repair (BER) pathway. To examine whether the DNA damage hypersensitivity in FA cells follows impaired BER activities, we measured DNA glycosylase and AP endonuclease activities in cell-free extracts from wild-type, FA, and FA-corrected cells. We showed that immortalized lymphoid cells of FA complementation Groups A, C, and D and from control cells from normal donors contain similar BER activities. Intriguingly, the cellular level of NEIL1 protein strongly depends on the intact FA pathway suggesting that the hypersensitivity of FA cells to ICLs may, at least in part, arise from downregulation or degradation of NEIL1. Consistent with this result, plasmid-based expression of the FLAG-tagged NEIL1 protein partially complements the hypersensitivity FA cells to the crosslinking agents exposures, suggesting that NEIL1 specifically complements impaired capability of FA cells to repair ICLs and oxidative DNA damage. These findings shed light to how the FA pathway may regulate DNA repair proteins and bring explanation for the long-time disputed problem of the oxidative stress sensitive phenotype of FA cells.
Collapse
Affiliation(s)
- Gaëtane Macé-Aimé
- CNRS UMR8200 Groupe, Voie FANC/BRCA et Cancer, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Mattera L, Courilleau C, Legube G, Ueda T, Fukunaga R, Chevillard-Briet M, Canitrot Y, Escaffit F, Trouche D. The E1A-associated p400 protein modulates cell fate decisions by the regulation of ROS homeostasis. PLoS Genet 2010; 6:e1000983. [PMID: 20548951 PMCID: PMC2883595 DOI: 10.1371/journal.pgen.1000983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/12/2010] [Indexed: 12/01/2022] Open
Abstract
The p400 E1A-associated protein, which mediates H2A.Z incorporation at specific promoters, plays a major role in cell fate decisions: it promotes cell cycle progression and inhibits induction of apoptosis or senescence. Here, we show that p400 expression is required for the correct control of ROS metabolism. Depletion of p400 indeed increases intracellular ROS levels and causes the appearance of DNA damage, indicating that p400 maintains oxidative stress below a threshold at which DNA damages occur. Suppression of the DNA damage response using a siRNA against ATM inhibits the effects of p400 on cell cycle progression, apoptosis, or senescence, demonstrating the importance of ATM–dependent DDR pathways in cell fates control by p400. Finally, we show that these effects of p400 are dependent on direct transcriptional regulation of specific promoters and may also involve a positive feedback loop between oxidative stress and DNA breaks since we found that persistent DNA breaks are sufficient to increase ROS levels. Altogether, our results uncover an unexpected link between p400 and ROS metabolism and allow deciphering the molecular mechanisms largely responsible for cell proliferation control by p400. External or internal causes can lead to the generation of oxidative stress in mammalian cells. This oxidative stress is detrimental to cell life since it can induce protein damages or, even worse, DNA damages. Thus, cells have to control strictly oxidative stress levels. In this manuscript, we show that the p400 ATPase, a chaperone of specific histone H2A variants, is important for this control in mammals and therefore prevents DNA damage induction. Moreover, we demonstrate that the known roles of p400 in cell proliferation are dependent upon its effect on oxidative stress. Finally, we identify the mechanisms by which p400 modulates oxidative stress levels. Altogether, our study uncovers a new role of mammalian p400 and demonstrates its functional importance.
Collapse
Affiliation(s)
- Lise Mattera
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Céline Courilleau
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Gaëlle Legube
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Takeshi Ueda
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Canada
| | - Rikiro Fukunaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Martine Chevillard-Briet
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Yvan Canitrot
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Fabrice Escaffit
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
23
|
Kachnic LA, Li L, Fournier L, Willers H. Fanconi anemia pathway heterogeneity revealed by cisplatin and oxaliplatin treatments. Cancer Lett 2010; 292:73-9. [PMID: 20034732 DOI: 10.1016/j.canlet.2009.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/19/2009] [Accepted: 11/06/2009] [Indexed: 01/01/2023]
Abstract
Genetic or epigenetic inactivation of the pathway formed by the Fanconi Anemia (FA) proteins occurs in several cancer types, including head and neck squamous cell carcinomas (HNSCC), rendering the affected tumors potentially hypersensitive to DNA crosslinking agents. However, the cytotoxicity of other commonly used cancer therapeutics in cells with FA pathway defects remains to be defined. Here, we focused on the effects of cisplatin and oxaliplatin in a panel of HNSCC and fibroblast cell lines. We found that FANCC- and FANCD2-mutant cells were unexpectedly more sensitive to platinum drugs than FANCA-mutant cells, and mono-ubiquitination of FANCD2, which is mediated by the FANCA and FANCC containing FA core complex was not required for platinum resistance. Interestingly, platinum hypersensitivity could be dissociated from mitomycin C hypersensitivity suggesting different underlying mechanisms. FANCD2 or RAD51 subnuclear foci were not useful as biomarkers of platinum hypersensitivity of FANCC/FANCD2-mutant cells. Our data add to an emerging body of evidence indicating that the FA pathway is not linear and that several protein subcomplexes with different functions exist. It will be important to establish biomarkers that can predict the sensitivity of tumors with specific FA defects to chemotherapeutic agents.
Collapse
Affiliation(s)
- Lisa A Kachnic
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
24
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
25
|
Kontou M, Hirsch-Kauffmann M, Schweiger M. Impaired synthesis of heme oxygenase-1 in Fanconi anemia cells can be rescued by transfection of Fanconi wild-type cDNA. Biol Chem 2009; 389:1327-32. [PMID: 18713020 DOI: 10.1515/bc.2008.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fanconi anemia is a fatal, hereditary chromosome instability syndrome of early childhood with progressive pancytopenia and cancer-proneness. Hypersensitivity to alkylating agents points to DNA repair inefficiency. Excess reactive oxygen intermediates and hypersensitivity to oxygen, all features of Fanconi anemia cells, give evidence for a disturbed oxidative metabolism. Here, we report that expression of the inducible heme oxygenase-1, an essential antioxidative defense protein, is impaired in Fanconi anemia cells and can be reinstated with the transfection of Fanconi A wild-type cDNA. A causative interaction of Fanconi anemia proteins with transcription of selected proteins is indicated. The results enlighten the oxygen sensitivity in Fanconi anemia.
Collapse
Affiliation(s)
- Maria Kontou
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin, Berlin, Campus Benjamin Franklin, Arnimallee 22, D-14195, Berlin, Germany
| | | | | |
Collapse
|
26
|
Elder DA, D'Alessio DA, Eyal O, Mueller R, Smith FO, Kansra AR, Rose SR. Abnormalities in glucose tolerance are common in children with fanconi anemia and associated with impaired insulin secretion. Pediatr Blood Cancer 2008; 51:256-60. [PMID: 18454466 DOI: 10.1002/pbc.21589] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND To determine prevalence of abnormal glucose metabolism in Fanconi Anemia (FA). PROCEDURE Thirty-nine children with FA underwent 2-hr oral glucose tolerance test (OGTT). Reference lean adolescents (REF) were older than FA patients (mean +/- SD: FA 8.6 +/- 3.9 years, REF 19.8 +/- 0.3 years, P < 0.001), but comparable in BMI Z-scores (FA 1.25 +/- 0.58, REF -0.02 +/- 0.24; P = 0.24). Patients had normal glucose tolerance (NGT) or abnormal glucose metabolism (AGM) by American Diabetes Association Criteria. Insulinogenic index estimated beta-cell function. Insulin resistance estimation used homeostatic model assessment (HOMA-IR). Insulin secretion estimation relative to insulin sensitivity used disposition index (DI). RESULTS Among FA patients, 46% had AGM. Compared to REF, there were significant differences in glycemic responses (area under curve: FA-NGT 344 +/- 42, FA-AGM 596 +/- 35, REF 208 +/- 25 mM, P < 0.0001) and insulinogenic index (FA-NGT 105 +/- 29, FA-AGM 44 +/- 8, and REF 173 +/- 41 pM/mM, P < 0.05). Insulin sensitivity did not differ among NGT, AGM, and REF (HOMA-IR: FA-NGT 1.9 +/- 0.4, FA-AGM 2.2 +/- 0.5, REF 1.3 +/- 0.2, P = NS). However, DI was significantly lower in both FA groups than REF [NGT 63.6 +/- 16.5 vs. AGM 26.4 +/- 3.5 (P < 0.048); REF 132.6 +/- 24.5 (NGT and AGM vs. REF, both P < 0.0002)]. CONCLUSION Abnormalities in glucose metabolism are frequent in young FA patients without prior diagnosis of diabetes, and are associated with marked defects in insulin secretion.
Collapse
Affiliation(s)
- Deborah A Elder
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC 7012, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Biomarkers and mechanisms of FANCD2 function. J Biomed Biotechnol 2008; 2008:821529. [PMID: 18483568 PMCID: PMC2375970 DOI: 10.1155/2008/821529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/25/2008] [Indexed: 01/04/2023] Open
Abstract
Genetic or epigenetic inactivation of the pathway formed by the Fanconi anemia (FA) and BRCA1 proteins occurs in several cancer types, making the affected tumors potentially hypersensitive to DNA cross-linkers and other chemotherapeutic agents. It has been proposed that the inability of FA/BRCA-defective cells to form subnuclear foci of effector proteins, such as FANCD2, can be used as a biomarker to aid individualization of chemotherapy. We show that FANCD2 inactivation not only renders cells sensitive to cross-links, but also oxidative stress, a common effect of cancer therapeutics. Oxidative stress sensitivity does not correlate with FANCD2 or RAD51 foci formation, but associates with increased γH2AX foci levels and apoptosis. Therefore, FANCD2 may protect cells against cross-links and oxidative stress through distinct mechanisms, consistent with the growing notion that the pathway is not linear. Our data emphasize the need for multiple biomarkers, such as γH2AX, FANCD2, and RAD51, to capture all pathway activities.
Collapse
|
28
|
Cigarette smoke induces genetic instability in airway epithelial cells by suppressing FANCD2 expression. Br J Cancer 2008; 98:1653-61. [PMID: 18475298 PMCID: PMC2391131 DOI: 10.1038/sj.bjc.6604362] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chromosomal abnormalities are commonly found in bronchogenic carcinoma cells, but the molecular causes of chromosomal instability (CIN) and their relationship to cigarette smoke has not been defined. Because the Fanconi anaemia (FA)/BRCA pathway is essential for maintenance of chromosomal stability, we tested the hypothesis that cigarette smoke suppresses that activity of this pathway. Here, we show that cigarette smoke condensate (CSC) inhibited translation of FANCD2 mRNA (but not FANCC or FANCG) in normal airway epithelial cells and that this suppression of FANCD2 expression was sufficient to induce both genetic instability and programmed cell death in the exposed cell population. Cigarette smoke condensate also suppressed FANCD2 function and induced CIN in bronchogenic carcinoma cells, but these cells were resistant to CSC-induced apoptosis relative to normal airway epithelial cells. We, therefore, suggest that CSC exerts pressure on airway epithelial cells that results in selection and emergence of genetically unstable somatic mutant clones that may have lost the capacity to effectively execute an apoptotic programme. Carcinogen-mediated suppression of FANCD2 gene expression provides a plausible molecular mechanism for CIN in bronchogenic carcinogenesis.
Collapse
|
29
|
Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene 2008; 27:4798-808. [PMID: 18438432 DOI: 10.1038/onc.2008.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fanconi anemia (FA) is a genome instability syndrome that is characterized by progressive bone marrow failure and a high risk of cancer. FA patients are particularly susceptible to leukemia as well as squamous cell carcinomas (SCCs) of the head and neck, anogenital region and skin. Thirteen complementation groups and the corresponding FA genes have been identified, and their protein products assemble into nuclear core complexes during DNA-damage responses. Much progress has been made in our understanding of post-translational FA protein modifications and physical interactions. By contrast, little is known about the control of protein availability at the level of transcription. We report here that multiple FA proteins were downregulated during the proliferative arrest of primary human keratinocytes and HeLa cells, and that the observed regulation was at a transcriptional level. Proliferative stimuli such as expression of HPV16 E7 as well as E2F1 overexpression in primary cells resulted in coordinate FA upregulation. To define the underlying mechanism, we examined the endogenous FANCD2 promoter, and detected regulated binding of members of the E2F/Rb family in chromatin immunoprecipitation assays. Finally, a 1 kb promoter fragment was sufficient to confer E2F/Rb regulation in reporter assays. Taken together, our data demonstrate FA gene co-regulation in synchrony with the cell cycle and suggest that deregulated expression of individual FA genes-in addition to FA gene mutation-may promote FA-related human cancer.
Collapse
|
30
|
Lloret A, Calzone R, Dunster C, Manini P, d'Ischia M, Degan P, Kelly FJ, Pallardó FV, Zatterale A, Pagano G. Different patterns of in vivo pro-oxidant states in a set of cancer- or aging-related genetic diseases. Free Radic Biol Med 2008; 44:495-503. [PMID: 18053816 DOI: 10.1016/j.freeradbiomed.2007.10.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 09/14/2007] [Accepted: 10/24/2007] [Indexed: 11/19/2022]
Abstract
A comparative evaluation is reported of pro-oxidant states in 82 patients with ataxia telangectasia (AT), Bloom syndrome (BS), Down syndrome (DS), Fanconi anemia (FA), Werner syndrome (WS), and xeroderma pigmentosum (XP) vs 98 control donors. These disorders display cancer proneness, and/or early aging, and/or other clinical features. The measured analytes were: (a) leukocyte and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), (b) blood glutathione (GSSG and GSH), (c) plasma glyoxal (Glx) and methylglyoxal (MGlx), and (d) some plasma antioxidants [uric acid (UA) and ascorbic acid (AA)]. Leukocyte 8-OHdG levels ranked as follows: WS>BS approximately FA approximately XP>DS approximately AT approximately controls. Urinary 8-OHdG levels were significantly increased in a total of 22 patients with BS, FA, or XP vs 47 controls. The GSSG:GSH ratio was significantly increased in patients with WS and in young (< or =15 years) patients with DS or with FA and decreased in older patients with DS or FA and in AT, BS, and XP patients. The plasma levels of Glx and/or MGlx were significantly increased in patients with WS, FA, and DS. The UA and AA levels were significantly increased in WS and DS patients, but not in AT, FA, BS, nor XP patients. Rationale for chemoprevention trials is discussed.
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, University of Valencia, Avenida Blasco Ibañez 15, E-46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Genetic instability syndromes with progeroid features. Z Gerontol Geriatr 2007; 40:339-48. [DOI: 10.1007/s00391-007-0483-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 01/09/2023]
|
32
|
Macé G, Briot D, Guervilly JH, Rosselli F. L'anémie de Fanconi : aspects cellulaires et moléculaires. ACTA ACUST UNITED AC 2007; 55:19-28. [PMID: 16904272 DOI: 10.1016/j.patbio.2006.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/05/2006] [Indexed: 11/25/2022]
Abstract
Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.
Collapse
Affiliation(s)
- G Macé
- Equipe Voie FANC/BRCA et Cancer FRE 2939 CNRS, Institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif, France
| | | | | | | |
Collapse
|
33
|
Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. ACTA ACUST UNITED AC 2006; 175:225-35. [PMID: 17060495 PMCID: PMC2064564 DOI: 10.1083/jcb.200607061] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells from patients with Fanconi anemia (FA), an inherited disorder that includes bone marrow failure and cancer predisposition, have increased sensitivity to oxidative stress through an unknown mechanism. We demonstrate that the FA group G (FANCG) protein is found in mitochondria. Wild-type but not G546R mutant FANCG physically interacts with the mitochondrial peroxidase peroxiredoxin-3 (PRDX3). PRDX3 is deregulated in FA cells, including cleavage by a calpainlike cysteine protease and mislocalization. FA-G cells demonstrate distorted mitochondrial structures, and mitochondrial extracts have a sevenfold decrease in thioredoxin-dependent peroxidase activity. Transient overexpression of PRDX3 suppresses the sensitivity of FA-G cells to H2O2, and decreased PRDX3 expression increases sensitivity to mitomycin C. Cells from the FA-A and -C subtypes also have PRDX3 cleavage and decreased peroxidase activity. This study demonstrates a role for the FA proteins in mitochondria witsh sensitivity to oxidative stress resulting from diminished peroxidase activity. These defects may lead to apoptosis and the accumulation of oxidative DNA damage in bone marrow precursors.
Collapse
|
34
|
Abstract
The Fanconi anemia (FA) pathway consists of a unique, multi-subunit E3 ubiquitin ligase complex that is activated in a replication and DNA-damage dependent mechanism. This FA core complex possesses a putative helicase and an E3 ubiquitin ligase subunit, is assembled in both the nucleoplasm and in chromatin, and is required for the mono-ubiquitination of FANCD2, a downstream FA protein, following genotoxic stress. Clinically, absence of the FA pathway results in congenital defects, bone marrow failure, and cancer predisposition. At the cellular level, this pathway is required for chromosomal stability and cellular resistance to DNA interstrand crosslinkers (ICLs) such as mitomycin C (MMC). A general model has emerged for the FA pathway as an arm of the DNA-damage response following ICLs. This review will summarize the current understanding of the FA core complex and propose a model for its activity.
Collapse
Affiliation(s)
- Allan M Gurtan
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
Cohen-Haguenauer O, Péault B, Bauche C, Daniel MT, Casal I, Levy V, Dausset J, Boiron M, Auclair C, Gluckman E, Marty M. In vivo repopulation ability of genetically corrected bone marrow cells from Fanconi anemia patients. Proc Natl Acad Sci U S A 2006; 103:2340-5. [PMID: 16461901 PMCID: PMC1413721 DOI: 10.1073/pnas.0510613103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited genomic instability syndrome representing one of the best examples of hematopoietic stem cell deficiency. Although FA might be an excellent candidate for bone marrow (BM) genetic correction ex vivo, knockout animal models are not sufficient to guide preclinical steps, and gene therapy attempts have proven disappointing so far. Contributing to these poor results is a characteristic and dramatic early BM-cells die-off when placed in culture. We show here that human primary FA BM cell survival can be ameliorated by using specific culture conditions that limit oxidative stress. When coupled with retrovirus-mediated transfer of the main complementation group FANCA-cDNA, we could achieve long-term reconstitution of the stem cell compartment both in vitro and in vivo. Gene-corrected BM cultures grew for >120 days, and after cultured cell transplantation into NOD/SCID mice, clonogenic human cells carrying the FANCA transgene could be detected 6 months after transduction. By comparison, untransduced cells died in culture by 15 days. Of necessity for ethical reasons, experiments were conducted on a very limited number of primary BM cells. By using low cytokine regimen and conditions matching regulatory requirements, a contingent of gene-corrected cells slowly emerges with an unmet potential for in vivo engraftment. Future therapeutic applications of stem cells might be expanding from these data. In addition, we provide a model of gene-corrected human primary cell growth that carries the potential to better delineate the combined role of both DNA damage and oxidative stress in the pathogenesis of FA.
Collapse
Affiliation(s)
- Odile Cohen-Haguenauer
- *Laboratory of Biotechnology and Applied Pharmacogenetics, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France
- Department of Hemato-Immuno-Oncology, Hospital Saint-Louis, 75475 Paris Cedex, France
- To whom correspondence may be addressed. E-mail:
or
| | - Bruno Péault
- Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15213
- Institut National de la Santé et de la Recherche Médicale Unité 506, 94807 Villejuif Cedex, France; and
| | - Cécile Bauche
- *Laboratory of Biotechnology and Applied Pharmacogenetics, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France
| | - Marie-Thérèse Daniel
- Department of Hemato-Immuno-Oncology, Hospital Saint-Louis, 75475 Paris Cedex, France
| | - Ibrahim Casal
- Institut National de la Santé et de la Recherche Médicale Unité 506, 94807 Villejuif Cedex, France; and
| | - Vincent Levy
- Department of Hemato-Immuno-Oncology, Hospital Saint-Louis, 75475 Paris Cedex, France
| | - Jean Dausset
- Fondation Jean Dausset and Institut de Génétique Moléculaire, 75010 Paris, France
- To whom correspondence may be addressed. E-mail:
or
| | - Michel Boiron
- Fondation Jean Dausset and Institut de Génétique Moléculaire, 75010 Paris, France
| | - Christian Auclair
- *Laboratory of Biotechnology and Applied Pharmacogenetics, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France
| | - Eliane Gluckman
- Department of Hemato-Immuno-Oncology, Hospital Saint-Louis, 75475 Paris Cedex, France
| | - Michel Marty
- Department of Hemato-Immuno-Oncology, Hospital Saint-Louis, 75475 Paris Cedex, France
| |
Collapse
|
36
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
37
|
Bijangi-Vishehsaraei K, Saadatzadeh MR, Werne A, McKenzie KAW, Kapur R, Ichijo H, Haneline LS. Enhanced TNF-alpha-induced apoptosis in Fanconi anemia type C-deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood 2005; 106:4124-30. [PMID: 16109778 PMCID: PMC1895245 DOI: 10.1182/blood-2005-05-2096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder characterized by progressive bone marrow failure. Experimental evidence suggests that enhanced oxidant and myelosuppressive cytokine-mediated apoptosis of hematopoietic stem and progenitor cells contributes to the pathogenesis of marrow failure in FA. However, the molecular mechanisms responsible for the apoptotic phenotype in hematopoietic cells are incompletely understood. Recent data in Fancc-/- murine embryonic fibroblasts (MEFs) implicate increased oxidant-induced apoptotic signaling through the redox-dependent protein, apoptosis signal-regulating kinase 1 (Ask1). Here, we examined whether altered Ask1 signaling participated in the proapoptotic phenotype of primary Fancc-/- MEFs and hematopoietic progenitors treated with the myelosuppressive cytokine tumor necrosis factor-alpha (TNF-alpha). Our data indicate that TNF-alpha induces hyperactivation of Ask1 and the downstream effector p38 in Fancc-/- MEFs. In addition,Ask1 inactivation in Fancc-/- MEFs and hematopoietic progenitors restored survival to wild-type (WT) levels in the presence of TNF-alpha. Furthermore, targeting the Ask1 pathway by using either antioxidants or a p38 inhibitor protected Fancc-/- MEFs and c-kit+ cells from TNF-alpha-induced apoptosis. Collectively, these data argue that the predisposition of Fancc-/- hematopoietic progenitors to apoptosis is mediated in part through altered redox regulation and Ask1 hyperactivation.
Collapse
Affiliation(s)
- Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4-476, 1044 W. Walnut St, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Pagano G, Degan P, d'Ischia M, Kelly FJ, Nobili B, Pallardó FV, Youssoufian H, Zatterale A. Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol 2005; 75:93-100. [PMID: 16000125 DOI: 10.1111/j.1600-0609.2005.00507.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fanconi anaemia (FA) is a genetic disease characterised by bone marrow failure with excess risk of myelogenous leukaemia and solid tumours. A widely accepted notion in FA research invokes a deficiency of response to DNA damage as the fundamental basis of the 'crosslinker sensitivity' observed in this disorder. However, such an isolated defect cannot readily account for the full cellular and clinical phenotype, which includes a number of other abnormalities, such as malformations, endocrinopathies, and typical skin spots. An extensive body of evidence pointing toward an involvement of oxidative stress in the FA phenotype includes the following: (i) In vitro and ex vivo abnormalities in a number of redox status endpoints; (ii) the functions of several FA proteins in protecting cells from oxidative stress; (iii) redox-related toxicity mechanisms of the xenobiotics evoking excess toxicity in FA cells. The clinical features in FA and the in vivo abnormalities of redox parameters are here reconsidered in view of the pleiotropic clinical phenotype and known biochemical and molecular links to an in vivo prooxidant state, which causes oxidative damage to biomolecules, resulting in an excessive number of acquired abnormalities that may overwhelm the cellular repair capacity rather than a primary deficiency in DNA repair. FA may thus represent a unique model disease in testing the integration between the acquisition of macromolecular damage as a result of oxidative stress and the ability of the mammalian cell to respond effectively to such damage.
Collapse
Affiliation(s)
- Giovanni Pagano
- Centre for Research, Innovation and Technological Transfer in Oncology and Life Sciences, Mercogliano (AV), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tebbs RS, Hinz JM, Yamada NA, Wilson JB, Salazar EP, Thomas CB, Jones IM, Jones NJ, Thompson LH. New insights into the Fanconi anemia pathway from an isogenic FancG hamster CHO mutant. DNA Repair (Amst) 2005; 4:11-22. [PMID: 15533833 DOI: 10.1016/j.dnarep.2004.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 01/09/2023]
Abstract
The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are largely unknown. By constructing and characterizing a null fancg mutant (KO40) of hamster CHO cells, we show that FancG protects cells against a broad spectrum of genotoxic agents. KO40 is consistently hypersensitive to both alkylating agents that produce monoadducts and those that produce interstrand crosslinks. KO40 cells were no more sensitive to mitomycin C (3x) and diepoxybutane (2x) than to 6-thioguanine (5x), ethylnitrosourea (3x), or methyl methanesulfonate (MMS) (3x). These results contrast with the pattern of selective sensitivity to DNA crosslinking agents seen historically with cell lines from FA patients. The hypersensitivity of KO40 to MMS was not associated with a higher level of initial DNA single-strand breaks; nor was there a defect in removing MNU-induced methyl groups from DNA. Both control and MMS-treated synchronized G1-phase KO40 cells progressed through S phase at a normal rate but showed a lengthening of G2 phase compared with wild type. MMS-treated and untreated early S-phase KO40 cells had increased levels of Rad51 foci compared with wild type. Asynchronous KO40 treated with ionizing radiation (IR) exhibited a normal Rad51 focus response, consistent with KO40 having only slight sensitivity to killing by IR. The plating efficiency and doubling time of KO40 cells were nearly normal, and they showed no increase in spontaneous chromosomal aberrations or sister chromatid exchanges. Collectively, our results do not support a role for FancG during DNA replication that deals specifically with processing DNA crosslinks. Nor do they suggest that the main function of the FA protein "pathway" is to promote efficient homologous recombination. We propose that the primary function of FA proteins is to maintain chromosomal continuity by stabilizing replication forks that encounter nicks, gaps, or replication-blocking lesions.
Collapse
Affiliation(s)
- Robert S Tebbs
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
41
|
Li X, Le Beau MM, Ciccone S, Yang FC, Freie B, Chen S, Yuan J, Hong P, Orazi A, Haneline LS, Clapp DW. Ex vivo culture of Fancc-/- stem/progenitor cells predisposes cells to undergo apoptosis, and surviving stem/progenitor cells display cytogenetic abnormalities and an increased risk of malignancy. Blood 2005; 105:3465-71. [PMID: 15644418 PMCID: PMC1895016 DOI: 10.1182/blood-2004-06-2483] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current strategies for genetic therapy using Moloney retroviruses require ex vivo manipulation of hematopoietic cells to facilitate stable integration of the transgene. While many studies have evaluated the impact of ex vivo culture on normal murine and human stem/progenitor cells, the cellular consequences of ex vivo manipulation of stem cells with intrinsic defects in genome stability are incompletely understood. Here we show that ex vivo culture of Fancc(-/-) bone marrow cells results in a time-dependent increase in apoptosis of primitive Fancc(-/-) progenitor cells in conditions that promote the proliferation of wild-type stem/progenitor cells. Further, recipients reconstituted with the surviving Fancc(-/-) cells have a high incidence of cytogenetic abnormalities and myeloid malignancies that are associated with an acquired resistance to tumor necrosis factor alpha (TNF-alpha). Collectively, these data indicate that the intrinsic defects in the genomic stability of Fancc(-/-) stem/progenitor cells provide a selective pressure for cells that are resistant to apoptosis and have a propensity for the evolution to clonal hematopoiesis and malignancy. These studies could have implications for the design of genetic therapies for treatment of Fanconi anemia and potentially other genetic diseases with intrinsic defects in genome stability.
Collapse
Affiliation(s)
- Xiaxin Li
- Cancer Research Institute, 1044 W Walnut Street, Rm 408, Indianapolis, IN 46202-5254, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 2004; 6:251-61. [PMID: 15380516 DOI: 10.1016/j.ccr.2004.07.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 06/22/2004] [Accepted: 07/15/2004] [Indexed: 12/16/2022]
Abstract
Pathological expression of human ErbB-2 protein, also known as HER-2, is common in many types of cancer. ErbB-2 is a member of the EGF receptor tyrosine kinase family and has been rigorously studied as a signaling molecule on the cell membrane. Here, we report that ErbB-2 is also expressed in the nucleus in cultured cells as well as primary tumor tissues. Nuclear ErbB-2 was found to associate with multiple genomic targets in vivo, including the cyclooxygenase enzyme COX-2 gene promoter. ErbB-2 forms a complex at a specific nucleotide sequence of the COX-2 promoter and is able to stimulate its transcription. This study demonstrates the presence of ErbB-2 in the nucleus and identifies the function of ErbB-2 as a transcriptional regulator.
Collapse
Affiliation(s)
- Shao-Chun Wang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder, which is characterized by congenital abnormalities, defective haemopoiesis and a high risk of developing acute myeloid leukaemia and certain solid tumours. It can be caused by mutations in at least eight different genes. Molecular studies have established that a common pathway exists, both between the FA proteins and other proteins involved in DNA damage repair such as NBS1, ATM, BRCA1 and BRCA2. This review summarizes the general clinical and specific haematological features and the current management of FA. Recent molecular advances will also be discussed in the context of the cellular and clinical FA phenotype, with particular emphasis on the haematological aspects of the condition.
Collapse
|
44
|
Franco S, van de Vrugt HJ, Fernández P, Aracil M, Arwert F, Blasco MA. Telomere dynamics in Fancg-deficient mouse and human cells. Blood 2004; 104:3927-35. [PMID: 15319283 DOI: 10.1182/blood-2003-10-3626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A number of DNA repair proteins also play roles in telomere metabolism. To investigate whether the accelerated telomere shortening reported in Fanconi anemia (FA) hematopoietic cells relates to a direct role of the FA pathway in telomere maintenance, we have analyzed telomere dynamics in Fancg-deficient mouse and human cells. We show here that both hematopoietic (stem and differentiated bone marrow cells, B and T lymphocytes) and nonhematopoietic (germ cells, mouse embryonic fibroblasts [MEFs]) Fancg(-/-) mouse cells display normal telomere length, normal telomerase activity, and normal chromosome end-capping, even in the presence of extensive clastogen-induced cytogenetic instability (mitomycin C [MMC], gamma-radiation). In addition, telomerase-deficient MEFs with humanlike telomere length and decreased Fancg expression (G5 Terc(-/-)/Fancg shRNA3 MEFs) display normal telomere maintenance. Finally, early-passage primary fibroblasts from patients with FA of complementation group G as well as primary human cells with reduced FANCG expression (FANCG shRNA IMR90 cells) show no signs of telomere dysfunction. Our observations indicate that accelerated telomere shortening in patients with FA is not due to a role of FANCG at telomeres but instead may be secondary to the disease. These findings suggest that telomerase-based therapies could be useful prophylactic agents in FA aplastic anemia by preserving their telomere reserve in the context of the disease.
Collapse
Affiliation(s)
- Sonia Franco
- Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernández Almagro, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Surrallés J, Jackson SP, Jasin M, Kastan MB, West SC, Joenje H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev 2004; 18:1359-70. [PMID: 15198978 PMCID: PMC423188 DOI: 10.1101/gad.1216304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jordi Surrallés
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autonòma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
Park SJ, Ciccone SLM, Beck BD, Hwang B, Freie B, Clapp DW, Lee SH. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem 2004; 279:30053-9. [PMID: 15138265 DOI: 10.1074/jbc.m403527200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.
Collapse
Affiliation(s)
- Su-Jung Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Pearl-Yafe M, Halperin D, Scheuerman O, Fabian I. The p38 pathway partially mediates caspase-3 activation induced by reactive oxygen species in Fanconi anemia C cells. Biochem Pharmacol 2004; 67:539-46. [PMID: 15037205 DOI: 10.1016/j.bcp.2003.09.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 09/16/2003] [Indexed: 11/25/2022]
Abstract
Because Fanconi anemia (FA) cells display hypersensitivity to oxidative stress and reactive oxygen species (ROS) that act as second messengers in cellular signaling, we investigated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation in two FA-C lymphocyte cell lines (HSC536/N and PD149L) and one FA-A cell line (HSC99) exposed to interferon (IFN)-gamma or H2O2. IFN-gamma induced accumulation of ROS and activation of JNK and p38 in HSC536/N and PD149L but not in HSC99 cells. Higher concentrations of H2O2 were needed to induce moderate intracellular levels of ROS and phosphorylation of MAPKs in FA-A than in FA-C cells. Pre-incubation with dehydroascorbic acid resulted in reduced intracellular ROS levels and inhibition of MAPK activation induced by the above treatments. To define the functional role of JNK and p38 in IFN-gamma signaling, the effects of pharmacological inhibition of the MAPKs on induction of IFN-gamma and anti-Fas antibody responses were determined. Treatment of HSC536/N cells with p38-specific inhibitors partially inhibited caspase-3 activation while pre-incubation with specific inhibitors of JNK had no effect. Altogether, these results suggest that FA-C cells are hypersensitive to IFN-gamma and are more sensitive to oxidative stress than FA-A cells and that IFN-gamma and anti-Fas antibody mediate signals for apoptosis in FA-C cells via p38 but not JNK pathways.
Collapse
Affiliation(s)
- Michal Pearl-Yafe
- Department of Cell Biology and Histology, Sackler Faculty of Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
48
|
Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P, Bergmann H, Haneline LS. Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem 2004; 279:16805-12. [PMID: 14764578 DOI: 10.1074/jbc.m313721200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia is a genetic disorder characterized by bone marrow failure. Significant evidence supports enhanced apoptosis of hematopoietic stem/progenitor cells as a critical factor in the pathogenesis of bone marrow failure in Fanconi anemia. However, the molecular mechanism(s) responsible for the apoptotic phenotype are incompletely understood. Here, we tested whether alterations in the activation of a redox-dependent pathway may participate in the pro-apoptotic phenotype of primary Fancc -/- cells in response to oxidative stress. Our data indicate that Fancc -/- cells are highly sensitive to oxidant stimuli and undergo enhanced oxidant-mediated apoptosis compared with wild type controls. In addition, antioxidants preferentially enhanced the survival of Fancc -/- cells. Because oxidative stress activates the redox-dependent ASK1 pathway, we assessed whether Fancc -/- cells exhibited increased oxidant-induced ASK1 activation. Our results revealed ASK1 hyperactivation in H2O2-treated Fancc -/- cells. Furthermore, using small interfering RNAs to decrease ASK1 expression and a dominant negative ASK1 mutant to inhibit ASK1 kinase activity, we determined that H2O2-induced apoptosis was ASK1-dependent. Collectively, these data argue that the predisposition of Fancc -/- hematopoietic stem/progenitor cells to apoptosis is mediated in part through altered redox regulation and ASK1 hyperactivation.
Collapse
Affiliation(s)
- M Reza Saadatzadeh
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | |
Collapse
|
49
|
Mei N, Lee J, Sun X, Xing JZ, Hanson J, Le XC, Weinfeld M. Genetic predisposition to the cytotoxicity of arsenic: the role of DNA damage and ATM. FASEB J 2003; 17:2310-2. [PMID: 14563695 DOI: 10.1096/fj.02-0093fje] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Arsenic is a pervasive cytotoxin and carcinogen in the environment. Although its mode of action has yet to be fully elucidated, oxidative DNA damage has been suggested. A series of DNA repair-defective human and hamster cell lines associated with sensitivity to oxidative agents were examined for their response to arsenic-induced cytotoxicity. Only the Ataxia telangiectasia (AT) cells displayed a marked hypersensitive response (greater than twofold). The protective role of the ATM protein was confirmed by the normal response to arsenic displayed by AT cells expressing wild-type ATM. Although the ATM protein plays a pivotal role in response to DNA double-strand breakage, none of the other cell lines with defects in double-strand break repair displayed a similar hypersensitivity. Further examination indicated that concentrations of sodium arsenite as high as 1 mg/l do not generate significant levels of double-strand breaks. Our data suggest that the ATM protein functions in an important but different capacity in the cellular response to arsenic toxicity than it does in response to agents that generate double-strand breaks, such as ionizing radiation. Furthermore, the lack of hypersensitivity to arsenic displayed by the other cell lines calls into question the hypothesis that DNA damage is a significant factor in arsenic cytotoxicity.
Collapse
Affiliation(s)
- Nan Mei
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|