1
|
Bonnet F, Molina A, Roussat M, Azais M, Bel-Vialar S, Gautrais J, Pituello F, Agius E. Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase. eLife 2018; 7:32937. [PMID: 29969095 PMCID: PMC6051746 DOI: 10.7554/elife.32937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.
Collapse
Affiliation(s)
- Frédéric Bonnet
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Angie Molina
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mélanie Roussat
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Azais
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative., Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative., Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Tamrin SH, Majedi FS, Tondar M, Sanati-Nezhad A, Hasani-Sadrabadi MM. Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. Rev Physiol Biochem Pharmacol 2017; 171:63-97. [PMID: 27515674 DOI: 10.1007/112_2016_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Center of Excellence in Biomaterials, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Mahdi Tondar
- Department of Biochemistry and Molecular & Cellular Biology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Amir Sanati-Nezhad
- BioMEMS and BioInspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada, T2N1N4.
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Chemistry & Biochemistry, and California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Percharde M, Bulut-Karslioglu A, Ramalho-Santos M. Hypertranscription in Development, Stem Cells, and Regeneration. Dev Cell 2016; 40:9-21. [PMID: 27989554 DOI: 10.1016/j.devcel.2016.11.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
Abstract
Cells can globally upregulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years but has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration, and cell competition. We review the history, methods for analysis, underlying mechanisms, and biological significance of hypertranscription.
Collapse
Affiliation(s)
- Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Míguez DG. A Branching Process to Characterize the Dynamics of Stem Cell Differentiation. Sci Rep 2015; 5:13265. [PMID: 26286123 PMCID: PMC4541069 DOI: 10.1038/srep13265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023] Open
Abstract
The understanding of the regulatory processes that orchestrate stem cell maintenance is a cornerstone in developmental biology. Here, we present a mathematical model based on a branching process formalism that predicts average rates of proliferative and differentiative divisions in a given stem cell population. In the context of vertebrate neurogenesis, the model predicts complex non-monotonic variations in the rates of pp, pd and dd modes of division as well as in cell cycle length, in agreement with experimental results. Moreover, the model shows that the differentiation probability follows a binomial distribution, allowing us to develop equations to predict the rates of each mode of division. A phenomenological simulation of the developing spinal cord informed with the average cell cycle length and division rates predicted by the mathematical model reproduces the correct dynamics of proliferation and differentiation in terms of average numbers of progenitors and differentiated cells. Overall, the present mathematical framework represents a powerful tool to unveil the changes in the rate and mode of division of a given stem cell pool by simply quantifying numbers of cells at different times.
Collapse
Affiliation(s)
- David G Míguez
- Depto. de Física de la Materia Condensada, Instituto Nicolás Cabrera and IFIMAC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Abstract
Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are properly members of emerging or steady-state populations. Clarity might yet be achieved by codifying differences between cells in emergent populations, including embryonic stem and embryonic germ (ES and EG) cells in tissue culture as opposed to self-renewing (SR) cells in steady-state populations.
Collapse
Affiliation(s)
- Stanley Shostak
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| |
Collapse
|